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ABSTRACT 

This paper presents a novel circular model termed the stereographic 

reflected gamma distribution, which is constructed using inverse 

stereographic projection. Trigonometric moments are derived, and 

population characteristics are examined. Through analysis, it is determined 

that this model provides the most accurate fit for modeling 100 ants data 

from Fisher (1993), when compared to other stereographic circular models 

such as the stereographic reflected gamma distribution, stereographic 

logistic distribution, and stereographic double exponential distribution. 

 

1. Introduction 

Several circular models, which wrap certain life-testing models around a unit circle, were 

derived by Dattatreya Rao et al. (2007) and Girija (2010). One method for constructing circular models 

involves applying stereographic projection to linear models. Upon reviewing the literature, it becomes 

evident that little attention has been given to constructing circular models induced by inverse 

stereographic projection. Minh and Farnum (2003) introduced a novel approach for generating 

probability distributions through stereographic projection, mapping each point on the unit circle to a 

point on the real line. Building upon this, Toshihiro Abe et al. (2010) developed symmetric unimodal 

distributions using inverse stereographic projection. Dattatreya Rao et al. (2011) (2016) utilized 

stereographic projection on the Cardioid model and logistic model to produce Cauchy-type models 

and circular versions of the logistic distribution and also introduced a differential approach to circular 
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models. Various methods for constructing circular models are discussed in Jammalamadaka and Sen 

Gupta (2001) and Girija (2010). In recent years Phani et al. (2012, 2013, 2017, 2019, and 2020) derived 

some circular and semicircular distributions based on stereographic projection. In the wrapping 

method, density functions are expressed as infinite series, posing challenges for computation. A 

modified inverse stereographic projection, from the real line to the circle, serves as the basis for 

constructing new circular models. 

The Gamma distribution holds a significant place in actuarial science, particularly in life-testing 

scenarios where the reflected gamma distribution is often employed. This paper endeavours to 

develop a stereographic version of the reflected gamma distribution by employing inverse 

stereographic projection, and it further derives its characteristic function. The primary focus of this 

study lies in assessing the goodness-of-fit of the newly proposed parametric model, particularly 

concerning a specific dataset involving the movements of ants, as documented by Fisher (1993). 

Additionally, the paper aims to identify the most suitable model by comparing various stereographic 

circular models, including the stereographic reflected gamma distribution, stereographic logistic 

distribution, and stereographic double exponential distribution, which has demonstrated well fits. 

2. Construction of Circular Models through Inverse Stereographic Projection 

 Probability distributions (both circular and linear) can be generated by applying stereographic 

projection, which yields one to one correspondence between the points on the unit circle and those 

on the real line. Inverse stereographic projection is defined by a one to one mapping given by 

( ) tan
2

J y v



 

= =  
 

, where ( ), , [ , ), 0y and v   −   −  . Suppose y  is randomly 

chosen on the interval ( ),−  . Let ( )F y  and ( )f y   denote the cumulative distribution and the 

probability density functions of the random variable Y  respectively. Then ( )1 12 tan
y

J y
v

− −  
= =  

 
 

is a random point on the unit circle. Let ( )G   and ( )g   denote the cumulative distribution and the 

probability density functions of this random point   respectively. Then ( )G   and ( )g    can be 

derived in terms of ( )F y  and ( )f y  using the following lemma. 

Lemma 2.1  If  0v   ,

 
( )1 12 tan

y
J y

v
− −  

= =  
 

 increases monotonically from −  to   as y  

increases from  −  to . 

Theorem 2.2: For  0v   , 
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The characteristic function of a circular model with the probability density function ( )g    is defined 

as ( ) ( )
2

0

,ie g d




    =  . The characteristic function of a stereographic circular model can 

be obtained in terms of respective linear model. Lukacs (1970) proved the following related to the 

characteristic function of linear model which is applied here in the case of stereographic circular 

models 

Let Y  be a random variable with distribution function ( )F y  and suppose that ( )S y  is a finite and 

single-valued function of y  . The characteristic function of ( )Y t  of the random variable ( )Z S y=  

is then given by  

( ) ( ) ( )( ) ( ) ( )itS Y itS yitY

Z t E e E e e dF y


−

= = =  . 

 By applying the above the characteristic function of a stereographic circular model is proposed in 

Theorem 2.3. 

Theorem 2.3 (Phani et al (2012)) :  If ( )g  and ( )G   are  the pdf  and the cdf of  the stereographic 

circular model  and  ( ) ( )andf y F y   are the pdf and the cdf of the respective linear model, then 

the characteristic function of a stereographic circular model is ( ) ( )
12tan

,
SY y

v

    
−  
 
 

=   

2. Stereographic Reflected Gamma Distribution 

A random variable  Y   on the real line is said to have reflected gamma distribution with scale 

parameter 0  , shape parameter 0c  and location parameter   if the probability density and 

cumulative distribution functions of  Y   are given by  

( )
( )

1

exp , , 0, and
2

c

c

y y
f y c y

c

 
 

 

−
−  − − 

=  −  −  
  

    (3.1) 

and 

( )

( )

( )
1

1 , , 0,
2

y
c

F y c y
c




 
 
 

 
 

= +  −   


 
 

                        (3.2) 

respectively. 

Then by applying inverse stereographic projection given by a one to one mapping  

tan , 0, ,
2

y v v


  
 

=  −   
 

 which leads to a three parametric symmetric circular model on unit 

circle. We call this distribution as stereographic reflected gamma distribution and it is denoted by  SRG

( ), , .c   
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A random variable  SY  on a unit circle is said to have stereographic reflected gamma distribution with 

scale parameters  0 , 0c    and location parameter  denoted by SRG ( ), ,c  . If its 

probability density and cumulative distribution functions are respectively given by  

( )
( ) ( )( )

1

1 1
tan exp tan

2 22 1 cos

c

c
g

c

 
  

 

−
    

= − − −    
 +     

, 

                      where  , 0, ,c
v v

 
    =  = −    , and     (3.3) 

( )

( )

( )
( )

( )

( )
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1

2

1

2

1 1
1 , where  y  = - tan for ,0

2 2

1 1
1 , where  y  = tan for 0,

2 2

y

y

c

c
G

c

c


 





 



    
−  −         

= 
   

+         

, , 0, ,c     −             (3.4) 

Clearly g satisfies the conditions of circular distribution [Jammalamadaka and Sengupta (2001)] 

1. ( ) 0 for everyg     −    

2. ( ) ( )2 ,g k g k  + =   

3. ( ) 1g d





 
−

=  

Graphs of probability density function and cumulative distribution function of stereographic reflected 

gamma distribution for various values of and c are presented here. 
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The Characteristic function of Stereographic Reflected Gamma Distribution 
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Trigonometric moments 

The trigonometric moments of the proposed distribution are given by  : 1, 2, 3,... ,  =   

where ,    = + with ( )cosE =   and ( )sinE =   being the th   order cosine and sine 

moments of the random angle , respectively. Because the stereographic reflected gamma 

distribution is symmetric about 0 = , it follows that the sine moments are zero. Thus   = .
 

Theorem 3.1: Under the pdf of stereographic reflected gamma distribution with 0 = , the first four   

( )cosE = , 1,2,3,4, = are given as follows: 
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is called as Meijer’s G-

function (Gradshteyn and Ryzhik, 2007). 

4. Application 

For the purpose of verifying goodness of fit the following movements of ants data set is considered. 

Data Set : Directions chosen by 100 ants in response to an evenly illuminated black target placed 

[Fisher (1993) ] 

Direction (in degrees)  

330, 290, 60,   200, 200, 180, 280, 220, 190, 180, 180, 160, 280, 180, 170, 190, 180, 140, 150, 

150, 160, 200, 190, 250, 180, 30,   200, 180, 200, 350, 200, 180, 120, 200, 210, 130, 30,   210, 

200, 230, 180, 160, 210, 190, 180, 230, 50,   150, 210, 180, 190, 210, 220, 200, 60,   260, 110, 

180, 220, 170, 10,   220, 180, 210, 170, 90,   160, 180, 170, 200, 160, 180, 120, 150, 300, 190, 
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220, 160, 70,   190, 110, 270, 180, 200, 180, 140, 360, 150, 160, 170, 140, 40,   300, 80,   210, 

200, 170, 200, 210, 190. 

The above data set is used to verify goodness of fit of stereographic reflected gamma model. 

The data plot is shown in figure 4.1 

 

                                                                     Figure 4.1 

To adapt a model to given data, it's necessary to first estimate the model's parameters. Circular 

models are defined by their mean direction and concentration parameter. These parameters can be 

determined using various statistical methods documented in literature. In this study, we employ the 

following approach for parameter estimation. 

Let 1 2 3, , ,..., n     be a set of circular observations. 

The mean direction is  

̂ =      

1

1

1

tan (A/ B)              if   A 0 ,  B 0

tan (A/ B)        if               B 0    

tan (A/ B) 2      if   A 0 ,   B 0





−

−

−

  


+ 


+  

 

and the mean resultant length ( estimate of the concentration parameter ) is  2 2ˆ B A = + ,    where  

1
cos iB

n
=   and  

1
sin iA

n
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To demonstrate the modeling behavior of stereographic reflected gamma distribution, the shape 

parameter c is to be estimated.  It can be estimated by invoking fmincon, the built-in MATLAB function. 

The estimates are     3.0 68,8 −=  0.6101 =  and

   

0. 42ˆ 80c =  . 

We consider stereographic reflected gamma, stereographic logistic (Dattatreya Rao et al (2011) and 

stereographic double exponential models (Phani (2013) to verify goodness-of-fit for movements of 

ants data of size   n = 100. As this is a large sample, we apply Kuiper’s and modified Watson’s U2 tests. 

The statistic of Watson’s U2 test for large sample [Mardia and Jupp (2000), p. 105] is  

      

2
2

2

nV
W


=         Where nV the statistic of Kuiper’s test [Mardia and Jupp (2000)] . 

The statistics of the two goodness-of-fit tests viz., Kuiper’s and Watson’s U2 tests are computed for 

the said circular models and are tabulated. 

Table 4.1 Statistics of the Kuiper’s and Watson’s U 2  tests of goodness-of-fit tests 

 Stereographic Logistic 

distribution 
Stereographic Reflected 

Gamma distribution 

Stereographic Double 

Exponential model 

 

Sample Size 

n =100 

    3.0 68,8 −=  

0.6101 =  

    3.0 68,8 −=  

ˆ

0.6101

0.8042c

 =

=
 

    3.0 68,8 −=  

0.6101 =  

Kuiper’s Test 7.9811   8.4098 8.2945 

Watson’s U2Test 0.0623  0.0692 0.0673 

 

On the lines of algorithm in Devaraj (2012) the cut off points for the data set of sample size n = 100 

are computed using MATLAB techniques. 

Table 4.2 The cut of points for the data set of sample size n = 100 

LOS 1% 5% 10% 

Tests 

Kuiper’s Test 0.6987 - 2.1225 0.7924 - 1.8348 0.8474 - 1.7437 

Watson’s 2U - Test 0.0163 - 0.2976 0.0231 - 0.2231 0.0270 - 0.1888 

 

            Based on the cutoff points derived from a sample size of n = 100, the statistical analysis 

conducted indicates that the dataset on ant movements adheres to all three circular models: 

stereographic reflected gamma, stereographic logistic, and stereographic double exponential models, 

across all levels of significance (i.e., 1%, 5%, and 10%) as determined by the modified Watson’s U2 test 

for estimated parameters.  
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Choosing the Best Model 

 When multiple parametric circular models demonstrate a good fit for a given dataset, 

determining the most appropriate model relies on the following criteria: 

i) Maximum Log Likelihood (MLL) (Law and Kelton, 1991) 

This method consists of maximizing the likelihood function, L, given by 

( )
1

n
L f i

i
=

=
 

Where ( )f    is the probability density function of the selected distribution, and , , ,...,1 2 3 n     

are the n data points in the sample to be fitted. More commonly, the log-likelihood function given by 

( )( )log( ) log
1

n
L f i

i
=

=
  

is maximized. Since the log function is a strictly increasing monotonic function, the results from 

maximizing either function are identical. 

ii) Akaike’s Information Criteria (AIC) 

A widely used information criterion is the Akaike Information Criterion (AIC). Proposed by 

Akaike in 1973, the concept of AIC aims to identify the model that minimizes the negative likelihood, 

adjusted for the number of parameters, as depicted in the equation. 

2 2log( )AIC k L= −
 

In this context, L represents the likelihood derived from the fitted model, and k denotes the 

number of parameters within the model. AIC, in essence, strives to identify the model that provides 

the best approximation to the underlying, unknown data generating process and its practical uses. 

Among a collection of candidate models for the dataset, the optimal model is determined as 

the one exhibiting the lowest AIC value. 

iii) Bayesian Information Criteria (BIC) 

      Another commonly employed information criterion is the Bayesian Information Criterion (BIC). 

Unlike the Akaike Information Criterion, BIC is formulated within a Bayesian framework, serving as an 

estimate of the Bayes factor for two rival models (Schwarz, 1978; Kass and Raftery, 1995). The BIC is 

mathematically defined as follows: 

2log( ) log( )BIC L k n=− −   

      At first glance, BIC appears similar to AIC, with the key distinction lying in the second term, which 

now incorporates the sample size n . Models minimizing the Bayesian Information Criterion are 

chosen. From a Bayesian standpoint, BIC aims to identify the most probable model for a given dataset. 

Among a set of candidate models, the preferred model is determined as the one with the lowest BIC 

value. 

From a data analysis perspective, the objective is to select the most suitable circular model that 

accurately represents the provided dataset among the well-fitting options. This challenge is addressed 
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by applying the criteria of AIC, BIC, and MLL. The computations of measures of relative performances 

are outlined in Table 4.3. 

Table 4.3:  Measures of Relative Performance for Goodness-of-fit at     3.0 68,8 −=  0.6101 =

   and 0. 42ˆ 80c =

 
Distribution Parameters MLL AIC BIC 

Stereographic 

Logistic model 
    3.0 68,8 −=  

0.6101 =  

 -246.2138 250.2138 501.6379 

Stereographic 

Reflected Gamma 

model 

    3.0 68,8 −=  

ˆ

0.6101

0.8042c

 =

=
 

 -220.3863 

 

224.3863 449.9829 

Stereographic 

Double 

Exponential model 

    3.0 68,8 −=  

0.6101 =  

-224.2926 

 

228.2926 457.7955 

 

Conclusion 

After considering AIC, BIC, and MLL, it is unanimously determined that the stereographic reflected 

gamma model provides a superior fit compared to the stereographic logistic and stereographic double 

exponential models for the estimates.       3.0 68,8 −=  0.6101 =

 

and 0. 42ˆ 80c = . 
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