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ABSTRACT 

Various p-valent subclasses of meromorphic, complex, and integral operator 

functions are used to derive a class of inequalities in this communication. 

The distortion property for the identical function 𝑀𝑝(𝛽), is demonstrated by 

the inequality given for it. 
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1. INTRODUCTION 

Numerous well-known univalent functions, such as the starlike functions, the functions 

convex in one direction, the functions starlike concerning symmetrical points [5], and the functions 

with a derivative of positive real part in the unit circle, are included in the set of close-to-convex 

univalent functions introduced by Kaplan [2] and Umezawa [6]. But it doesn't have any spiral-shaped 

ones. 

 Ogawa [3] recently presented a broader adequate condition for univalence that also contains 

the weakest sufficient requirement for spiral-likeness, and it was simultaneously extended to the case 

of p-valence. 

 The class of functions 𝑓(𝑧) of the form 𝑓(𝑧) = 𝑧𝑝 + ∑ 𝑎𝑛𝑧𝑛 ∀ 𝑝 ∈ 𝑁∞
𝑛=0  is denoted by 𝑉(𝑝). 

Which are analytical and multivalent in the open unit disc 𝑫 = 𝑧: |𝑧| < 1. Let p-valent convex 

functions and the well-known class of p-valent starlike functions,  respectively, be denoted by 𝜖𝑝  and 
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𝜔𝑝. For 𝑓(𝑧) ∈ 𝑉(𝑝) as previously said and 𝑔(𝑧) ∈ 𝑉(𝑝) as stated by 𝑔(𝑧) = 𝑧𝑝 +

∑ 𝑏𝑛𝑧𝑛 ∀ 𝑝 ∈ 𝑁∞
𝑛=𝑝+1 , (𝑓. 𝑔)(𝑧) = 𝑧𝑝 + ∑ 𝑎𝑛𝑏𝑛 ∞

𝑛=𝑝+1 𝑧𝑛∀ 𝑧 ∈ 𝑫 gives the Hadamard product or 

convolution of 𝑓(𝑧) and 𝑔(𝑧).   

 A generalization of univalent functions is multivalent functions, particularly p-valent functions. 

The existence of a univalent mapping from one domain to another is one of the key issues in the study 

of univalent functions. Such a mapping must meet the requirement and have equal connectivity levels. 

This condition is likewise adequate, and the issue is reduced to the task of mapping a given domain 

onto a disc if and is simply connected to domains whose boundaries contain more than one point. 

 In this regard, the class of functions 𝑓(𝑧) = 𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 + ⋯ , 𝑧 ∈ 𝐷 that are regular and 

univalent on the unit disc 𝑫 = 𝑧: |𝑧| < 1, normalized by the constraints 𝑓(0) = 0, 𝑓′(0) = 1, and 

possessing the expansion play a special significance in the theory of univalent functions on simply-

connected domains. 

 When it comes to multiply-connected domains, it is examined how a specific multiply-

connected domain maps onto so-called canonical domains. P-valent functions, in particular, can be 

defined as follows: 

 Let 𝐴p (p is a positive integer) stand for the class of analytic functions in the unit disc 𝑫 =

𝑧: |𝑧| < 1 of form 𝑓(𝑧) = 𝑧𝑝 + ∑ 𝑎𝑛+𝑝𝑧𝑛+𝑝∞
𝑛=0 . If the function 𝑓(𝑧) ∈ 𝐴p assumes no value more 

than p times in 𝑫, it is said to be p-valent in 𝑫.    

Lemma 1.1 [7] If 𝑎, 𝑏 and 𝑐 (𝑐 ≠ 0, −1, −2, … ) be any real or complex numbers then 

          ∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑠𝑡)−𝑎𝑑𝑡 =
𝛤𝑏 𝛤(𝑐−𝑏)

𝛤𝑐

1

0
∑

(𝑎)𝑛(𝑏)𝑛𝑧𝑛

(𝑐)𝑛

∞
𝑛=0  ; 𝑅𝑒 (𝑐) > 𝑅𝑒 (𝑏) > 0. 

Lemma 1.2 [4] Let 𝜔(𝑧) = 1 + 𝑏1𝑧 + 𝑏2𝑧2 + ⋯ be the class of function. Then,   

                                    𝑅𝑒 (𝜔(𝑧)) − 2𝛾 + 1 ≥
2(1−𝛾)

1+|𝑧|
, 0 ≤ 𝛾 < 1; 𝑧 ∈ 𝑈. 

 Later, in 1980 Goel and Sohi [1] introduced a differential operator 𝐷𝛿+𝑝−1 for p-valent 

analytic functions given by 

𝐷𝛿+𝑝−1𝑓(𝑧) =
𝑧

(1−𝑧)𝛿+𝑝 . 𝑓(𝑧) = 𝑧𝑝 + ∑ 𝜑𝑛(𝛿)𝑎𝑛𝑧𝑛 ∞
𝑛=𝑝+1  with 𝛿 > −𝑝 and 𝜑𝑛(𝛿) =

(𝛿+𝑝)𝑛−𝑝

(𝑛−𝑝)!
.  

2. OUR CLAIMS    

Claim 2.1 If 𝑀𝑝(𝛽) is the subclass of, class of meromorphic p-valent function ∑𝑝
′  in the unit disc with 

0 < |𝑧| < 𝑟 ≤ 1, 0 < 𝛽 ≤ 𝑝 ∀𝑝 ∈ 𝑁. Then demonstrate the inequality 𝑟𝑝 − 𝑟𝑝 𝑝+𝛽

𝑝−𝛽
≤ |𝑓(𝑧)| ≤ 𝑟𝑝 +

𝑟𝑝 𝑝+𝛽

𝑝−𝛽
.    

Proof: Taking an assumption that 𝑓 ∈ 𝑀𝑝(𝛽) then     

                                         ∑ ((𝑛 + 𝑝) (1 −
1

𝛼
) − 𝛽) 𝑎𝑛+𝑝 ≤ 𝑝 + 𝛽∞

𝑛=0   

We achieve (𝑝 + 𝛽) ∑ 𝑎𝑛+𝑝 ≤∞
𝑛=0 ∑ ((𝑛 + 𝑝) (1 −

1

𝛼
) − 𝛽) 𝑎𝑛+𝑝 ≤ 𝑝 + 𝛽∞

𝑛=0  that means       

∑ 𝑎𝑛+𝑝 ≤
𝑝+𝛽

𝑝−𝛽
∞
𝑛=0 . Now, |𝑓(𝑧)| = |𝑧𝑝 + ∑ 𝑎𝑛+𝑝𝑧

(𝑛+𝑝)(1−
1

𝛼
)∞

𝑛=0 | and this implies that 

                                         |𝑓(𝑧)| ≤ |𝑧|𝑝 + ∑ 𝑎𝑛+𝑝
∞
𝑛=0 |𝑧|(𝑛+𝑝)(1−

1

𝛼
)
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                                                    ≤ 𝑟𝑝 + ∑ 𝑎𝑛+𝑝𝑟
(𝑛+𝑝)(1−

1

𝛼
)∞

𝑛=0   

                                                    ≤ 𝑟𝑝 + 𝑟𝑝 𝑝+𝛽

𝑝−𝛽
 

Again, since |𝑓(𝑧)| = |𝑧𝑝 + ∑ 𝑎𝑛+𝑝𝑧
(𝑛+𝑝)(1−

1

𝛼
)∞

𝑛=0 | and this implies that 

                                         |𝑓(𝑧)| ≥ |𝑧|𝑝 − ∑ 𝑎𝑛+𝑝
∞
𝑛=0 |𝑧|

(𝑛+𝑝)(1−
1

𝛼
)
  

                                                    ≥ 𝑟𝑝 − ∑ 𝑎𝑛+𝑝𝑟
(𝑛+𝑝)(1−

1

𝛼
)∞

𝑛=0   

                                                    ≥ 𝑟𝑝 − 𝑟𝑝 𝑝+𝛽

𝑝−𝛽
. 

Hence, 𝑟𝑝 − 𝑟𝑝 𝑝+𝛽

𝑝−𝛽
≤ |𝑓(𝑧)| ≤ 𝑟𝑝 + 𝑟𝑝 𝑝+𝛽

𝑝−𝛽
 for 0 ≤ |𝑧| ≤ 1. Hence the proof is completed.  

Claim 2.2 If 𝑝(𝑧) be analytic within unit disc 𝑫 = 𝑧: |𝑧| < 1 with 𝑝(0) = 1 and 𝑅𝑒 𝑝(𝑧) > 0, ∀ 𝑧 ∈ 𝑫 

and 𝑓 ∈ 𝑢∆𝑝
𝜖 (𝑐, 𝜏, 𝑎, 𝑏). Then demonstrate the inequality 

|𝐴𝑘+𝑝|

|𝜏|
∏𝑗=1

𝑘−2 |𝑎−1|𝑗

|𝑎−1|𝑗+|𝜏||𝜂|(𝑐+𝑝)
 

 ≤
(𝑐+𝑝)|𝜂|

𝑘|𝑎−1|𝜓𝑘+𝑝(𝑐)
.     

Proof: On using the fact 

                  𝑅𝑒 𝑒𝑖𝜖 (
𝜏𝐷𝑐+𝑝−1𝑓(𝑧)−2𝐷𝑐+𝑝−1𝑓(𝑧)+2𝐷𝑐+𝑝𝑓(𝑧)

𝑏𝐷𝑐+𝑝−1𝑓(𝑧)
) > (

1−2𝑎+𝑏

1−𝑎
) cos 𝜖 ∀ 𝑧 ∈ 𝐷  

Now, setting 𝑝(𝑧) by 𝑒𝑖𝜖 (
𝜏𝐷𝑐+𝑝−1𝑓(𝑧)−2𝐷𝑐+𝑝−1𝑓(𝑧)+2𝐷𝑐+𝑝𝑓(𝑧)

𝑏𝐷𝑐+𝑝−1𝑓(𝑧)
) =

1

1−𝑎
((1 − 𝜏)𝑝(𝑧) cos 𝜖 + (𝑏 −

𝑎) cos 𝜖 ) + 𝑖 sin 𝜖. Since, 𝑝(𝑧) is analytic in 𝐷 with 𝑝(0) = 1 and 𝑅𝑒 𝑝(𝑧) > 0, ∀ 𝑧 ∈ 𝑫. Let 

                                                   𝑝(𝑧) = 1 + ∑ 𝑝𝑛
∞
𝑛=1 𝑧𝑛       ∀ 𝑧 ∈ 𝐷   

Then, both equalities gives us 

                 
𝜏𝐷𝑐+𝑝−1𝑓(𝑧)−2𝐷𝑐+𝑝−1𝑓(𝑧)+2𝐷𝑐+𝑝𝑓(𝑧)

𝑏𝐷𝑐+𝑝−1𝑓(𝑧)
=

((1−𝑏) cos 𝜖−𝑖(𝑎−1) sin 𝜖) ∑ 𝑝𝑛
∞
𝑛=1 𝑧𝑛−𝑒𝑖𝜖(𝑎−1)

𝑒𝑖𝜖(𝑎−1)
   

𝑖. 𝑒.     (𝐷𝑐+𝑝−1 − 𝐷𝑐+𝑝)𝑓(𝑧)𝑒𝑖𝜖(𝑎 − 1)(𝜂𝐷𝑐+𝑝−1𝑓(𝑧) ∑ 𝑝𝑛
∞
𝑛=1 𝑧𝑛)−1 = 2−1𝜏 

𝑖. 𝑒.      
𝜂 ∑ 𝑝𝑛

∞
𝑛=1 𝑧𝑛

(𝑝𝐷𝑐+𝑝−1𝑓(𝑧)−𝑧(𝐷𝑐+𝑝−1𝑓(𝑧))
′
)

=
2𝑒𝑖𝜖(𝛼−1)

𝑏(𝑐+𝑝)𝐷𝑐+𝑝−1𝑓(𝑧)
 

𝑖. 𝑒.   
𝑧𝑝 ∑ 𝑝𝑛

∞
𝑛=1 𝑧𝑛

∑ (𝐾−𝑝)𝜓𝑘(𝑐)∞
𝑘=𝑝+1 𝑧𝑛𝐴𝑘𝑧𝑘 +

∑ 𝜓𝑘(𝑐)∞
𝑘=𝑝+1 𝐴𝑘𝑧𝑘 ∑ 𝑝𝑛

∞
𝑛=1 𝑧𝑛

∑ (𝐾−𝑝)𝜓𝑘(𝛿)∞
𝑘=𝑝+1 𝑧𝑛𝐴𝑘𝑧𝑘 =

2𝑒𝑖𝜆(𝛼−1)

𝑏(𝛿+𝑝)𝜂
 

On comparing the coefficient of 𝑧𝑛+𝑝−1 on both sides we achieve 

                 𝑒𝑖𝑎 𝜓𝑛+𝑝−1(𝑐)𝑛+𝑝−1

𝑝1𝐴𝑛+𝑝−2𝜓𝑛+𝑝−2(𝑐)+⋯+𝑝𝑛−1
=

𝜏𝜂

2
{

𝑐(1−𝑎)−1

(𝑛−1)
−

𝑝(𝑎−1)−1

(𝑛−1)
} 

Taking absolute on both sides and applying the coefficient estimates we get, 

                
|𝐴𝑛+𝑝−1|

1+𝜓𝑝+1(𝑐)|𝐴𝑝+1|+⋯+𝜓𝑛+𝑝−2(𝑐)|𝐴𝑛+𝑝−2|
≤

|𝜏|(𝑐+𝑝)|𝜂|

(𝑛−1)|𝑎−1𝜓𝑛+𝑝−2(𝑐)|
. 

Applying the same argument, then we get by mathematical induction 
|𝜏|

|𝐴𝑝+1|
≤

|𝑎−1|

|𝜂|
 which is valid for 

𝑛 = 2, similarly 
|𝐴𝑝+1|

|𝜏|(1+𝜓𝑝+1(𝑐)|𝐴𝑝+1|)
≤

|𝜂|(𝑐+𝑝)

2|𝑎−1|𝜓𝑝+2(𝑐)
 is valid for 𝑛 = 3.  
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Also, 
|𝐴𝑘+𝑝−1|

|𝜏|
∏𝑗=1

𝑘−2 |𝑎−1|𝑗

|𝑎−1|𝑗+|𝜏||𝜂|(𝑐+𝑝)
≤

|𝜂|(𝑐+𝑝)

(𝑘−1)|𝑎−1|𝜓𝑘+𝑝−1(𝑐)
 is valid for 𝑛 = 𝑘. Taking, 

|𝐴𝑘+𝑝|

|𝜏|
∏𝑗=1

𝑘−2 |𝑎−1|𝑗

|𝑎−1|𝑗+|𝜏||𝜂|(𝑐+𝑝)
≤

|𝜂|(𝑐+𝑝)

𝑘|𝑎−1|𝜓𝑘+𝑝(𝑐)
{

|𝑎−1|+|𝜏||𝜂|(𝑐+𝑝)

|𝑎−1|
+

|𝜏|(𝑐+𝑝)|𝜂|

2|𝑎−1|
.

|𝑎−1|+|𝜏||𝜂|(𝑐+𝑝)

|𝑎−1|
+ ⋯ 

…
|𝜏|(𝑐+𝑝)|𝜂|

(𝑘−1)|1−𝑎|
}. Which implies that 

|𝐴𝑘+𝑝|

|𝜏|
∏𝑗=1

𝑘−2 |𝑎−1|𝑗

|𝑎−1|𝑗+|𝜏||𝜂|(𝑐+𝑝)
≤

(𝑐+𝑝)|𝜂|

𝑘|𝑎−1|𝜓𝑘+𝑝(𝑐)
 and this completes the 

proof. 

Claim 2.3 If 𝑏 > 0 and 𝑓𝑘(𝑧) ∈ ∑𝑝 then show that the inequality 𝑅𝑒 (𝜏0(𝑧)) >

𝑏𝛿−1 ∫ 𝑥𝑏𝛿−1−1 (2𝑐3 − 1
2(1−𝑐3)

1+𝑢
) 𝑑𝑥

1

0
.  

Proof: Suppose that each of the functions 𝑓𝑘(𝑧) ∈ ∑𝑝 for 𝑘 = 1, 2 satisfies the condition 𝜏𝑘(𝑧) =

𝑧𝑝[𝛿𝑃𝑏,𝑝
𝑎−1𝑓𝑘(𝑧)+(1 − 𝛿)𝑃𝑏,𝑝

𝑎−1𝑓𝑘(𝑧)] for 𝑘 = 1, 2 we have 𝜏𝑘(𝑧) ∈ 𝑃(𝑐𝑘) where 𝑐−1 =
1−𝑌𝑘

1−𝑋𝑘
;  𝑘 =

1, 2. Making use of the identity 𝑃𝑏,𝑝
𝑎−1𝑓𝑘(𝑧) =

𝑏

𝛿
𝑧−

𝑏+𝛿𝑝

𝛿 ∫ 𝑥−
𝑏+𝛿𝑝

𝛿 𝜏𝑘(𝑥)𝑑𝑥
𝑧

0
 for 𝑘 = 1, 2. Now, taking the 

help of 𝐽(𝑧) = 𝑃𝑏,𝑝
𝑎−1(𝑔1. 𝑔2)(𝑧) we get the following result 𝑃𝑏,𝑝

𝑎−1𝑓𝑘(𝑧) 

 = (
𝑏

𝛿
𝑧−

𝑏+𝛿𝑝

𝛿 ∫ 𝑥−
𝑏+𝛿𝑝

𝛿 𝜏1(𝑥)𝑑𝑥
𝑧

0
) . (

𝑏

𝛿
𝑧−

𝑏+𝛿𝑝

𝛿 ∫ 𝑥−
𝑏+𝛿𝑝

𝛿 𝜏2(𝑥)𝑑𝑥
𝑧

0
). Which leads us the result 

𝑃𝑏,𝑝
𝑎−1𝑓𝑘(𝑧) = 𝑏𝛿−1𝑧−

𝑏+𝛿𝑝

𝛿 ∫ 𝑥−
𝑏+𝛿𝑝

𝛿 𝜏0(𝑥)𝑑𝑥
𝑧

0
 here 𝜏0(𝑧) = 𝑧𝑝[𝛿𝑃𝑏,𝑝

𝑎−1𝐽(𝑧)+(1 − 𝛿)𝑃𝑏,𝑝
𝑎−1𝐽(𝑧)] and is 

equal to 𝑧𝑝(𝛿𝑃𝑏,𝑝
𝑎−1 + (1 − 𝛿)𝑃𝑏,𝑝

𝑎−1)𝐽(𝑧) = 𝑏𝛿−1𝑧−𝑏𝛿−1
∫ 𝑥𝑏𝛿−1−1(𝜏1. 𝜏2)𝑑𝑥

𝑧

0
. But, 𝜏1(𝑧) ∈ 𝑃(𝑐1) 

and 𝜏2(𝑧) ∈ 𝑃(𝑐2) it follows that (𝜏1. 𝜏2)(𝑧) ∈ 𝑃(𝑐3)(𝑐3 = 1 − 2(1 − 𝜏1)(1 − 𝜏2)). Now, applying 

Lemma 1.2 we achieve 𝑅𝑒 (𝜏1. 𝜏2)(𝑧) − 2𝑐3 + 1 ≥
2(1−𝑐3)

1+|𝑧|
. Now, by using this inequality in the value 

of 𝜏0(𝑧) and then applying the Lemma 1.1 we have 𝑅𝑒 (𝜏0(𝑧)) =

𝑏𝛿−1 ∫ 𝑥𝑏𝛿−1−1𝑅𝑒 (𝜏1. 𝜏2)(𝑧𝑥)𝑑𝑥
1

0
≥ 𝑏𝛿−1 ∫ 𝑥𝑏𝛿−1−1 (2𝑐3 − 1

2(1−𝑐3)

1+𝑢|𝑧|
) 𝑑𝑥

1

0
 and we can also write 

𝑅𝑒 (𝜏0(𝑧)) > 𝑏𝛿−1 ∫ 𝑥𝑏𝛿−1−1 (2𝑐3 − 1
2(1−𝑐3)

1+𝑢
) 𝑑𝑥

1

0
 and this completes the proof of the theorem.      
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