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ABSTRACT 

We show determinantal identities verified by 𝑟𝑘(𝑛),the number of ways 

that a positive integer n can be written as sum of k squares, which are 

implied by the polynomial structure of 𝑟𝑘(𝑛). 
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1. Introduction 

In [1-6] we find the following iterated relation for𝑟𝑘(𝑛),the number of representations of n as 

ways that a positive integer n can be written as sum of k squares [7-9]: 

𝑛 𝑟𝑘(𝑛) = 2𝑘 ∑ 𝐴(𝑗)𝑛
𝑗=1 𝑟𝑘(𝑛 − 𝑗),                                                                   (1) 

The term A(j) in (1), can be expressed as: 

𝐴(𝑗) = (−1)𝑗−1 𝑗 ∑
1

𝑑

⬚
𝑜𝑑𝑑  𝑑𝘐𝑗  ,                                                      (2) 

From (2), we notice that 𝐴(1) = 1,   𝐴(2) = −2,   𝐴(3) = 4, 𝐴(4) = −4, 𝑒𝑡𝑐. , thus it appears the 

sequence was studied in [10]: In particular, the first few terms are given by  

1, -2, 4, -4, 6, -8, 8, -8, 13, -12, 12, -16, 14, -16, 24, -16, 18, -26, 20, -24, 32, -24, 24, -32, 31, -28, …,     (3) 

From [11, 12], we in fact obtain closed expression for A(n): 
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𝐴(𝑛) = {
− (𝜎(𝑛) − 𝜎 (

𝑛

2
)) , 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

 𝜎(𝑛),                        𝑛 𝑖𝑠 𝑜𝑑𝑑,
                                        (4) 

which explicitly contains sum of divisors function.  

From (1) it is clear that  𝑟𝑘(𝑛) is a polynomial in k of degree n [16-18]: 

𝑟𝑘(𝑛) = 𝑎(𝑛, 𝑛) 𝑘𝑛 + 𝑎(𝑛, 𝑛 − 1)𝑘𝑛−1 + ⋯ + 𝑎(𝑛, 2)𝑘2 + 𝑎(𝑛, 1) 𝑘 ,  (5) 

and it is possible to deduce nice expressions for the coefficients of 𝑟𝑘(𝑛). In view of [17]: 

𝑎(𝑛, 𝑛) =
2𝑛

𝑛!
 ,     𝑛 ≥ 1,          𝑎(𝑛, 1) =

2

𝑛
 𝐴(𝑛),     𝑛 ≥ 1, 

𝑎(𝑛, 𝑛 − 1) = − 
2𝑛−1

(𝑛 − 2)!
 ,     𝑛 ≥ 2 ,         𝑎(𝑛, 𝑛 − 2) =

2𝑛−3  (3 𝑛 − 1)

3 (𝑛 − 3)!
 ,      𝑛 ≥ 3,                          (6) 

𝑎(𝑛, 𝑛 − 3) =
2𝑛−4(𝑛 + 2) ( 3− 𝑛)

3 (𝑛 − 4)!
 ,   𝑛 ≥ 4,     𝑎(𝑛, 𝑛 − 4) =

2𝑛−7

45
[

8(85 𝑛 − 371)

(𝑛 − 5)!
+ 

15(𝑛 + 9)

(𝑛 − 7)!
] ,   𝑛 ≥ 5,etc. 

which enables us to reproduce several polynomials type (5) reported in the literature, for 

example [2, 13]: 

𝑟𝑘(1) = 2𝑘,            𝑟𝑘(2) = 2𝑘(𝑘 − 1),             𝑟𝑘(3) =
4

3
 𝑘(𝑘 − 1)(𝑘 − 2),  

𝑟𝑘(4) =
2

3
 𝑘[3(2𝑘 − 1) + 𝑘(𝑘 − 1)(𝑘 − 5)],      𝑟𝑘(5) =

4

15
 𝑘(𝑘 − 1)[3(2𝑘 − 3) +

𝑘(𝑘 − 4)(𝑘 − 5)],                                                              (7) 

𝑟𝑘(6) =
4

45
 𝑘(𝑘 − 1)(𝑘 − 2)[45 + (𝑘 − 3)(𝑘 − 4)(𝑘 − 5)],  

𝑟𝑘(7) =
8

315
 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)(𝑘3 − 15𝑘2 + 74𝑘 − 15),    

In [16], it was shown that the 𝑎(𝑛, 𝑚) can be written in terms of partial exponential Bell 

polynomials [19-21].The solution of (1) is given by [4]: 

𝑟𝑘(𝑛) =
1

𝑛!
𝐵𝑛(2𝑘 ∙  0! 𝐴(1), 2𝑘 ∙ 1! 𝐴(2), 2𝑘 ∙ 2! 𝐴(3), … , 2𝑘 ∙ (𝑛 − 1)! 𝐴(𝑛)),                      (8) 

which involves complete Bell polynomials. 

   In Sec. 2 we show that (5) and (6) imply determinantal identities verified by  𝑟𝑘(𝑛). 

2. Linear system generated by (5) for 𝒌 = 𝟏, 𝟐, … , 𝒏 + 𝟏. 

We write (5) in the form: 

𝑟𝑘(𝑛) = 𝑎(𝑛, 0) + 𝑎(𝑛, 1) 𝑘 + 𝑎(𝑛, 2)𝑘2 + ⋯ + 𝑎(𝑛, 𝑛 − 1)𝑘𝑛−1 + 𝑎(𝑛, 𝑛)𝑘𝑛,                 (9) 

where 𝑎(𝑛, 0) = 0. From (9) we can obtain a linear system if k takes the values 1, 2, … , 𝑛 + 1, 

whose determinant is given by [22]: 

|

|

1 1 12           ⋯ 1𝑛−1 1𝑛

1 2 22           ⋯ 2𝑛−1 2𝑛

1
⋮
1
1

3
⋮
𝑛

𝑛 + 1

32           ⋯ 3𝑛−1 3𝑛

⋮            ⋯ ⋮                 ⋮
𝑛2            ⋯ 𝑛𝑛−1 𝑛𝑛

 (𝑛 + 1)2 ⋯ (𝑛 + 1)𝑛−1 (𝑛 + 1)𝑛

|

|
= ∏ (𝑡 − 1)!𝑛+1 

𝑡=1  ,      𝑛 ≥ 1,               (10) 
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then (6), (10) and this linear system imply the following identities: 

|

|

𝑟1(𝑛) 1 12           ⋯ 1𝑛−1 1𝑛

𝑟2(𝑛) 2 22           ⋯ 2𝑛−1 2𝑛

𝑟3(𝑛)
⋮

𝑟𝑛(𝑛)
𝑟𝑛+1(𝑛)

3
⋮
𝑛

𝑛 + 1

32           ⋯ 3𝑛−1 3𝑛

⋮            ⋯ ⋮                 ⋮
𝑛2            ⋯ 𝑛𝑛−1 𝑛𝑛

 (𝑛 + 1)2 ⋯ (𝑛 + 1)𝑛−1 (𝑛 + 1)𝑛

|

|
= 0 ,        𝑛 ≥ 1,                       (11) 

 

|

|

1 1 12           ⋯ 1𝑛−1 𝑟1(𝑛)

1 2 22           ⋯ 2𝑛−1 𝑟2(𝑛)

1
⋮
1
1

3
⋮
𝑛

𝑛 + 1

32           ⋯ 3𝑛−1 𝑟3(𝑛)
⋮            ⋯ ⋮                 ⋮

𝑛2            ⋯ 𝑛𝑛−1 𝑟𝑛(𝑛)

 (𝑛 + 1)2 ⋯ (𝑛 + 1)𝑛−1 𝑟𝑛+1(𝑛)

|

|

= 2𝑛 ∏ (𝑡 − 1)!𝑛 
𝑡=1  ,        𝑛 ≥ 1,  (12) 

 

|

|

1 1 12           ⋯ 𝑟1(𝑛) 1𝑛

1 2 22           ⋯ 𝑟2(𝑛) 2𝑛

1
⋮
1
1

3
⋮
𝑛

𝑛 + 1

32           ⋯ 𝑟3(𝑛) 3𝑛

⋮            ⋯ ⋮                 ⋮
𝑛2            ⋯ 𝑟𝑛(𝑛) 𝑛𝑛

 (𝑛 + 1)2 ⋯ 𝑟𝑛+1(𝑛) (𝑛 + 1)𝑛

|

|

= 2𝑛−1 𝑛 (1 − 𝑛) ∏ (𝑡 − 1)!𝑛 
𝑡=1 , 𝑛 ≥ 2,         (13)          

 

|

|

1 𝑟1(𝑛) 12           ⋯ 1𝑛−1 1𝑛

1 𝑟2(𝑛) 22           ⋯ 2𝑛−1 2𝑛

1
⋮
1
1

𝑟3(𝑛)
⋮

𝑟𝑛(𝑛)
𝑟𝑛+1(𝑛)

32           ⋯ 3𝑛−1 3𝑛

⋮            ⋯ ⋮                 ⋮
𝑛2            ⋯ 𝑛𝑛−1 𝑛𝑛

 (𝑛 + 1)2 ⋯ (𝑛 + 1)𝑛−1 (𝑛 + 1)𝑛

|

|
=

2

𝑛
 𝐴(𝑛) ∏ (𝑡 − 1)!𝑛+1 

𝑡=1 ,   𝑛 ≥ 1, 𝑒𝑡𝑐.     (14)  

The results (9) to (14) indicate that 𝑟𝑘(𝑛) is the Lagrange’s interpolating polynomial [23-27] for 

the data points ( 𝑗, 𝑟𝑗(𝑛)) , 𝑗 = 1, 2, … , 𝑛 + 1, thus  𝑟𝑘(𝑛) is a polynomial in k of degree n ; then 

with this approach we can to construct, for example, the polynomials in (7). 

Remark 1.- It is possible to prove some expressions for the sequence defined in (2), for example 

[3, 10]: 

𝐴(𝑗) =
𝑗

2
∑

(−1)𝑘−1

𝑘

𝑗
𝑘=1 (

𝑗
𝑘

) 𝑟𝑘(𝑗), ∑ 𝐴(𝑗)∞
𝑗=1 𝑞𝑗 = ∑

(−1)𝑗−1  𝑗 𝑞𝑗

1 − 𝑞2𝑗
∞
𝑗=1  .       (15) 

Remark 2.-In [2] the following recurrence relations were obtained: 

𝑟𝑘(𝑛) = ∑ (−1)𝑡𝑛
𝑡=1 ℎ(𝑡)𝑟𝑘+1(𝑛 − 𝑡), 𝑛 ℎ(𝑛) = − ∑ 𝐴(2𝑙)𝑛

𝑙=1 ℎ(𝑛 − 𝑙),                       (16) 

ℎ(𝑛) =
1

𝑛!
𝐵𝑛(−0!𝐴(2), −1!𝐴(4), −2! 𝐴(6), … , −(𝑛 − 1)!𝐴(2𝑛)), 

then the sequence A015128 (m) = 2 A014968 (m) results [11]: 

ℎ(𝑚) = 2, 4, 8, 14, 24, 40, 64, 100, 154, 232, 344, 504, 728, …                                 (17) 
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