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ABSTRACT
A new parametric function C,((P)=XiL;In(a+p;)—2iL;Inp;
—2iLipi —Ina, a> 0is put forth forthe P=(py, ps, ......... , Pn)

probability distribution, and its characteristics are examined. This
study uses logistic type growth models, the related measure of
directed divergence, and its measurement in fuzzy sets. All functions
are twice differentiable. We also look into the suggested function's
monotonicity and the multivariate normal distribution that goes along
with it.

Keywords: measure of entropy, directed divergence, multivariate
normal distribution, logistic type growth model, innovation model,
information theory

1. Introduction

We are inspired by R K. Verma, C.L. Dewangan, P. Jha [12], Kapur [7], and Burg [1] to
derive a novel parametric measure of entropy in this study, which is the joint effect of

measures of information. C.E. Shannon [9] provided the measurement in 1948.
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S(P) = —XiL, pi Inp; (1.1)

to calculate the entropy or uncertainty of it. It is also possible to think of it as a gauge of how
equal each individual is p1, p2, . ... ... .. , ppto the others. ]J.P. Burg [1] and ]J.N. Kapur [7]
provided the measures later in 1972.

B(P) = XL, Inp; (1.2)
And

Ko(P)=—YipiInp; + =¥ (1+ap)In(l+ap) (A +a)ln(1+a)  (13)

While Kapur's measure has one parameter, Shannon's and Burg's measures have none. The
meaures attributed to Shannon, Burg, and Kapur always provide non-negative probabilities
when maximised using Lagrange's method, subject to linear limitations on probabilities. The
most effective and most utilised metric is Shannon's measure. Burg's measure has also shown
success, but because it is always negative, it is difficult to use it to gauge uncertainty. It has,
nevertheless, been applied and is capable of being applied for entropy maximisation [5]. Its
maximum value also diminishes with n, which is an undesirable characteristic for an entropy
metric.

In the current discussion, we derive a new parametric entropy measure by modifying
the Burg's and Kapur's measures. Along with examining the measure's characteristics, we will
also look into the directed divergence that is connected to logistic type growth models,
Kullback-Liebler [8], and its measures in fuzzy sets. It has also been possible to determine the
equivalent multivariate normal distribution. The sections that follow display each of these.

2. Our Results
2.1. Some Properties of the New Measures of Information

The measure is defined by
Co (P) = Sy InC52) — By pi — Ina @2.1.1)

It has the following properties:

1. It is a continuous function of py, pp, . .. .. .. .. , Dn, SO that it changes by a small amount
whenpy,py, ..o , Pn change by small amounts.

2. It is a permutationally symmetric functionof py, pp, ... ... ... , Pn, 1.€. the function does
not change whenp, , p,, ......... , Pn are permuted among themselves.

3. It is maximum, subject to natural constraints Y;-;p; = 1 when

(2.1.2)

=
[
|
=
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The maximum value is an increasing function of n. In fact the maximum value is given by

f(n) =XIn(1+3)-YIn--1-Ina (2.1.3)
= nln(nTH) - nln% —1-—Ina (2.1.4)
f'(n) ==—=+In(n+a) (2.1.5)
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frm)=—- (nfa)z (2.1.6)
=—+ > 0 (2.1.7)
So that f(n) is a convex of n and f’(n) is a monotonic increasing function of n. Now
F(n) = ——+In(n + )
n+a
=1- ﬁ +In(n + a) (2.1.8)
:1—31ny=—y_a;ymy; y=n+a>0 (2.1.9)
Since
y>0andy—a+Iny > 0wheny >0 (2.1.10)
We get
f'(m) >0 (2.1.11)
So that f(n) is always increasing.
4Now, -Cu(P) == % C, (P) = % 2.1.12)
and
ap;’api C,(P) =0 (2.1.13)
So that C, (P) is a convex functionof py, pp, .. ....... , Pn.-
5. Since C, (P) is a convex function and its domain is
p1 =20, p=20,......... Pn=0, YXhip =1
Its minimum value occurs at each of the degenerate distributions
A =(0,0,..,10,0,..0),i=1,2,..,n, (2.1.14)
where in A; , unity occurs in the ith place and for each of these, its value is zero.
Thus
C,(P)20, (2.1.15)

and it only disappears when P crosses over into a degenerate distribution. i.e., when all
ambiguity is eliminated and there is complete confidence. Thus,C, (P) except for additivity
and recursivity, meets all significant qualities satisfied by Shannon's measure of entropy. But
these characteristics don't matter for the goal of maximising entropy, hence C, (P) entropy
exists.

2.2. Generating Functions for the Measure of Information

Let us define
1 i
fo®) = Sa (5P = Sy pf S atpy 2.2.1)

Then
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’ 1+ap; 1+ap;
fa(® = T In ) Bl plps - Bily atlna py (222)

Therefore

1+apl

fa(0) = XiZy In(—=) = Xizi pi — (2.2.3)

Which is same as (2.1.1)

Again we define

fap® = Ty G2t = Ty (bp)" — Ty (b)' P (2.2.4)
Then
fap(®) = ZEa P In( )~ By (bp)' pi — Zika(ba)  Inba py (22.5)
So that
far(0) = By (=P = B2y p - (2.2.6)
Which is same as (2.1.1)

2.3. Corresponding Measure of Fuzzy Information
Corresponding to new parametric measure of entropys, i.e.

C(P)_anl ( ) 21 1Pi —

1+ap1

=Xz In(1 +apy) — XL Inp; — XL, pi — XikgIna pp a>0
We get the measure

C(A) = Xit1In(1 + apa (7)) + Xitg In(1 +a —apa(x;)) — Xitg Inpa (%) — Xit; In(1 — pa(xy)) —
Yic1Ma (%) — Xiz1(1 — pa(x)) —Ina (2.3.1)

2.4. Generating Function for Corresponding Measure of Fuzzy Information

Let us define

n Aratafua(x)=-a*pixd\e  vn ] _ NNE At
i=1( #A(xi)_ui(xi) ) l’:l(nuA(‘xl)(l nuA(xl))) a

(I+apaxi))(A+a—apaXi)\t _ yn . . ANt
Z 1( HA(Xi)(l—HA(Xi)) ) 1=1(”‘A(X1)(1 ”’A(Xl))) a (2'4'1)

Now , differentiating with respect to t we get

(I +ap,(x))(A +a = apy(x))
ta(x)(1 = pax;))

(1 +ap,(x))(A +a - apy(x))

t
TN B

)

i=1

—Z(HA(Xi)(l — uax)) In(ua(x;) (1 — pa(x;)) —a'lna
=1

Taking t = 0, we obtain

(1+auA(xl))(1+a aHA(xz)) n i _ Y

=Xt In(1 +aps () + Eis In(1 + a — apa (%)) — iz In(pa(xi) — Xitq In(1 —
Ma(xi)) — Xt a(xi) — Xty (1 — pa(x)) —Ina (24.2)
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Which is the same as (2.3.1).
Again, let us define

b2+ab?+a?b?uy(x;))-a?b?u’ (x;)
bua(xi)=buj(x;)

i=1( )t =X pi — (b))

b+ab i))(b+ab—ab i
= D (A ATyt — Sy (bua () (b ()))' — (ba)*  (243)

Now, differentiating with respect to t we get

n (btabus(ep)(b+ab=abus(x)); | (b+abua(x))(b+ab-abuad)y _ s Nem
= ooty O PO ooty ) 2= OmaG)(

bpa(xi)))* In(bpa (x;) (b — bpa(x;)) — (ba)" In(ba) (2.4.4)

Putting t=0 and b=1, we obtain

n o AHerAED) A+a-aua@D)\ _ N1 (e T — § ,
i In((reaCDCLesha GOl _ 3 n(ua (x) (1~ maGi)) — Ina = T In(1 + aps () +

Liln(1+a—aps(x;)) — X In(ua(x) — Xitq In(1 — pa(xq)) — Xitg ma(xy) —
Yiz1(1 —pa(x)) —Ina (2.4.5)

Which is the same as (2.3.1).

2.5. Corresponding Measures of Directed Divergence

Motivated by Kullback and Libeler [8] we get the corresponding measure of directed
divergence,

Do (P:Q) = Xi- 1 q; lnz—j— i=19iIn (%‘i‘m)+2?=1qipi+lna (25.1)

Here D,(P: Q) satisfies the properties D,(P: Q) = 0, vanishes if Q=P and is a concave function
of bothpy p,... .pnand .4, 4n.

2.6. Generating Function for Corresponding Measure of Directed Divergence

Let
9a®) =El1qi (o) +Eaipi +af,  a>0 (2.6.1)
So that
gu®) =X",q (ql'fcilpi)t ln(qif;pi) +Y" ., qpfInp; + atlna, a>0 (262
Therefore
gL(0) =YY" g; ln% - q 1n(%) + Y%, qp; +1na, a>0 (2.6.3)
or
92(0) = TiL1 g In(7) + By i Inp; + Ina, a>0  (264)

Which is the same as (2.5.4).

Again we define

bq; t ; t
Jap © =T 0 (o) + 3y ai (B) +Zyaipf +a  ab>0 (265)

So that
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9o (® = T4 (5225) 1n (522) 4 37y (2) In (%) + Sy qupf Inpy +afina,ab >0
(2.6.6)

Hence
921 (0) = Xy g2 =T i) + Xy gpi e a>0  (267)
Which is the same as (2.5.1)

2.7. Corresponding Measure of Fuzzy Directed Divergence

Corresponding to new parametric measure of directed divergence is

D(P:Q) =iy i In() + ki g Inp; + Ina a>0

We get, the measure in fuzzy set

B) = B e (x) In(—O) ) n g 1-a ()
D(A:B) = BiL, g (59) In(2%0—) + T, (1 — i (x)) In(rmtS——) +

Yiz1me(xma(xi) + Xiz1(1 — pp(xi)) (1 — pa(xi)) + Ina a>0 27.1)

2.8. Generating Function for Corresponding Measure of Fuzzy Directed Divergence

Let

n , uA(xi>+auA<xi)—aui(xi)—uA(xi)uB(xo)t n 1-p4 (1) T on N
Ziz g () (amxi)ws(xo—aui(xi)—uA(xouB(xi) * l=1(1+a—auA(xi)+uB(xi)) + Zia(ma )

t
MA(xi).UB(xi)) +at a>0

Now , differentiating with respect to t we obtain

n N RaGDtana ) —aps (x)—ma(x)up(xd e
Li=1 Kz (xl)(a#A(xi)+uB(xi)-allf\(xi)-HA(xi)HB(xi)

(#A(Xi)+a#A(Xi)—afo(xi)—MA(xi)MB(xi))_|_ n( 1-pa(xi) YeIn( 1-pa(xi) )
apa(x)+up () —aps () —pa(x) up (x;) 1=1M +a—apy () —pp (%) 1+a—apa(x)—up(xq)

it (uae) — ua(x)up ()" (a(x;) — pa(xdps(x)) +alna
Putting t=0, we obtain

Z 11 () In ta(x)(1+ a —apy(x;) — up(x;)) )
i=1

apa(x;) + pup(x;) — paCx)(apa(x) + 1p(x;))

S 1—pa(xi) .
’ ; e apa(xi) — up (Xi)) * ;(“A(xi) — pa(x)pp(x;)) +1na

)

_ i# () In(PACD (L + = aita () — s ()
£ (apg () + e e (@~ a ()

n 1—pa(xi) c
’ ; ln(l +a—apa(x;) — IJ-B(Xi)) " ; paCepdpp () (1 — pa(xpup(x;)) +1na

— yh . pa(xi) n _ ) 1-pa(xi) n _
- Z1=]_ nu‘B (xl) ln((aﬂA(xi)-l'HB(xi))) + 2121(1 HB (xl)) 1n(1+a_auA(Xi)_uB(Xi)) + lel(]‘

a(x))(1 = pp(x))(1 — pa(xup(x)) +Ina (28.1)
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The last is the same as (2.7.1). again we re-write

n

Zﬂ (x_)(b“A (xi) + abua(x;) — abuz(x;) — bpa (x)us (%)),
L7 bapy (xp) + bug () — abud () — bua(x)us ()

i=1

. b — bus(x) z
" ;(b + ab — abu,(x;) + bug (xl-))t + ;(b'“A(xi) — pa(x)bpg (x))" + (ba)t

ab>0

Now , differentiating with respect to t we get:

3" o A0 SBEACK) —SBHCX) —baOba ),
L7 N  bayy () + bug () — abud () — bua (x)us ()

i=1
buA(xi)+abuA(xi)—abui(xi)—buA(xi)uB(xi))
bapa(x;)+bug(x;)—abp? (x;)—bpua(x)up(x;)

n b—bpa(xi) t b—bpua(x;) n N
=1 ran=abuateo-vuaGe)) " orab—abuatro-buaGey) T 2i=1(PHaCKD)

Ha(e)bpg ()" (bpa(x;) — pa(x)bug(x)) + (ba)* In(ba)
Therefore (if we set t=0)

i“ () nC bua(e) (1 + a — apa (%) — pp (1)) )
LT abpa () + bitg (x0)) — #aGe) (abpaCer) + by (60))

. b= a3 :
" ; G ap = abpiy(x;) — bug (xl.)) +; apa (x;)bug (x;) (1

— abuy(x)pp(x;)) +ina

or putting b=1,

i# (xy In(PACD(L+ = @A) — o ()
LT (apua () + pp ) (= aGe)

n 1—pa(xi) c
’ ; ln(l +a—apa(x) — IJ-B(Xi)) + ; ta(x)pp () (1 — pa(x)pp(x;)) +1na

= By i (6) In( AT 4+ BT (1 = p () I o) + X (1
pa(x))(1 = pp(x)) (1 — pa(xdup (%)) +1na (2.8.2)
Which is the same as (2.7.1).
2.9. Corresponding Logistic Type Growth Model
We can use the entropy
Ca(P) = Ty () — By py — Sy Inap,
a>0
= YitiIn(1 +ap;) — Xiz; Inp; — Xizy pi — Xit,Inap; a> 0

For the continuous variate case, we get the entropy

fbd(ln(l +af(x))—Inf(x)—f(x) —Ina f(x))dx (2.9.1)
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The corresponding LTGM is

1df _ _ o
P Inl+af)—Inf—f—Inaf (2.9.2)
Now we consider the corresponding function
() =In(l+af)—Inf — f —Inaf (2.9.3)
So that;
?(0) = oo, #(1)=0 (2.9.4)
Therefore
"= —2_g-1_1-
o'(f) = Tt 7 1-lIna (2.9.5)
wepy 1 2, 1 _ 1+2af
(Z) (f) - (1+af)? a® + f2 - (1+af)? (296)
Hence , @(f) is a convex function of f. From (2.9.5) there is no point of inflexion.
Since, the corresponding LTGM is
1dr In(1 + +1 = 1
Zge =1 +af) +Ing—f ~Inaf
Let us find the limiting model as a — 0, Le.
1df 1
ZE: [ln(1+af)+ln;—f—lnaf] (297)
1
=In< (2.9.8)

Which is % times Gompertz’s model, see [3].

2.10. Corresponding Logistic Type Growth Model in a Fuzzy Set

In fact the corresponding LTGM for the new parametric measure of entropy in a fuzzy set is

given by

=L F(A) = In(1 + apa(x)) +In(1+ @ — apa () = Inpra ) = In(1 = pa () — pa() —
(1 - uaCx) (210.1)

For this model, when a = 0, we obtain
=L F(A) = = Inpra () = In(1 = g () — () — (1 = a(x)) (2.10.2)
= —In(ua () (1 = (a(x0))) —a ) — (1 = a(x)) (2.10.3)
= In[3 (2(a(x)) — 203 )] —ta () — (1 — pa ) (2.10.4)
= —1n [5 (saCe) + 1= paCe) = 366 = 1= KA Cx0) + 24 G )| = [a ) + (1 = 14 ()] -
[13 (%) + (1 — 3 (x,))] (2:10.5)
= —In[ ((raCx) + (1 = a(x))) = @A) = (1 = paGI2] — [1a @) + (1 = paCx))] -
[13 (%) + (1 — 13 (x,))] (2:10.6)
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Which is the anti- logarithm of corresponding model of innovation of diffusion due to Fisher-
Pry (see[2]), or logistic model due to Mickendric - Pai (see[9]) in a fuzzy set. Of course, we can
also modify the model (2.10.1)

1L F(A) = In(1+ apa () +In(L + @ — apa(x)) — paCe) In s () — (1 = pa () In(L =
1a(6)) = aCe) — (1 — a(x) (210.7)

For this model whena — 0, we get

oS @ = ) I+ (1~ pa(x)) In — ua(x) = (1 = pa(x) (2.10.8)

1-pa (x )
Which is the corresponding model of logistic of ompertz (see[3]) in a fuzzy set.

2.11. Multivariate Normal Distribution

The probability density function of X;X,............ X is
f(x) = — e 2 WK (2.11.1)
(V2m)P K|z
We can use
[+ af (0)dx — [ Inf(x)dx (2.11.2)
As an entropy of a continuous random variable. Now we consider the corresponding function
d d
H(f) = [, In(1 + af(x)) dx — [, Inf(x)dx (2.11.3)
1 - 1 -
= [fIn(l+a—— e 2XWTKTI Xy gy fn(——e WKWy 4y (211.4)
(@m"IKD2z ((2m™|K])2

((21‘[)“IKI)%+ae_%(X_”)TK_1(X_”) 1 0d d S
= In{( . ydx+ - [ (X — WK™ (X = wdx + [ In(2m"[KDzdx (2.11.5)
((zm"|K|)2

= [ In{(@mPIKD? +ae 2 W gp L A — TR (X p)dx (2.11.6)
1 22— ) TRL(X — s
= % In {(@m"IKI)z + ae Kimm) TR W dx + 230 — i) KDy X — ) (2117)
1 L) (X =) T (K1) s
:Zi,j In {((2‘1‘[)“|K|)2 + ae K= Xi—p) T (K )ll)}dx+%2ji (X]- _ lflj) X; — Ui)T(K_l)ij (2.11.8)

=% %iln {((Zn)nuq)% + ae_%Kji((K_l)“)} dx +o B TiK((KDy) (2119

= %In {((Zn)n|K|)§ + ae‘§<<KK‘1)ii>} dx + L 3(KK1); (2.11.10)
~In {((Zn)nnq)% +ae7e)+1 2.11.11)
~In {((Zn)nnq)% +ae7s}+Ine: 2.11.12)
= In{((2re)"[KI)? + a) (2.11.13)

= log {((Zne)anl)% + a}
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3. Conclusion

We conducted an analysis in this work and found that, with the exception of additivity

and recursivity, the suggested function meets all significant qualities satisfied by Shannon's

measure of entropy. These characteristics, however, have no bearing on maximising entropy

because, anytime a measure is maximised, its monotonically growing functions are also

maximised, even though the initial measure might be additive or recursive. We note that the

presence of the parameter in the suggested function gives it more flexibility in its uses. Finally,

a few more significant findings are also made that have applications in the information and

statistical sciences.
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