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ABSTRACT 

This article explores the fascinating interplay between classical 

and quantum mechanics on Riemann manifolds. We delve into 

the geometrical aspects of classical mechanics, the quantization 

process, and the resulting quantum mechanics on curved spaces. 
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nature of space, time, and the fundamental laws of physics. 
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1 Introduction 

Riemannian manifolds offer a robust mathematical framework for studying curved 

spaces, a vital concept in both classical and quantum mechanics. Let (𝑀, 𝑔) represent a 
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Riemannian manifold where 𝑀 is a smooth manifold and 𝑔 is the Riemannian metric, a 

smooth, positive-definite bilinear form. The metric 𝑔 allows us to define the length of a vector 

𝑣 ∈ 𝑇𝑝𝑀 (the tangent space at point 𝑝) as: 

 ∥ 𝑣 ∥𝑔= √𝑔𝑝(𝑣, 𝑣) 

Given a smooth curve 𝛾: [𝑎, 𝑏] → 𝑀, the length 𝐿(𝛾) of the curve is defined by the integral: 

 𝐿(𝛾) = ∫
𝑏

𝑎
∥ �̇�(𝑡) ∥𝑔  𝑑𝑡 = ∫

𝑏

𝑎 √𝑔𝛾(𝑡)(�̇�(𝑡), �̇�(𝑡)) 𝑑𝑡 

This leads us to the concept of geodesics, which are curves 𝛾(𝑡) that locally minimize the 

length functional. Geodesics satisfy the second-order differential equation: 

 
𝐷�̇�

𝑑𝑡
= 0 

where 
𝐷

𝑑𝑡
 denotes the covariant derivative along the curve. In local coordinates (𝑥1, 𝑥2, … , 𝑥𝑛), 

the geodesic equation becomes: 

 
𝑑2𝑥𝑖

𝑑𝑡2 + Γ𝑗𝑘
𝑖 𝑑𝑥𝑗

𝑑𝑡

𝑑𝑥𝑘

𝑑𝑡
= 0 

Here, Γ𝑗𝑘
𝑖  are the Christoffel symbols associated with the Levi-Civita connection, which 

encodes the curvature of the manifold. 

 

figureA geodesic curve 𝛾(𝑡) on the manifold 𝑀.  

In quantum mechanics, particles moving on curved spaces are governed by the 

Schrödinger equation. The quantum Hamiltonian �̂� for a particle of mass 𝑚 moving on a 

Riemannian manifold is given by: 

 �̂� = −
ℏ2

2𝑚
Δ𝑔 

where Δ𝑔 is the Laplace-Beltrami operator associated with the Riemannian metric 𝑔. The 

Laplace-Beltrami operator, in local coordinates, takes the form: 

 Δ𝑔 =
1

√|𝑔|

∂

∂𝑥𝑖 (√|𝑔|𝑔𝑖𝑗 ∂

∂𝑥𝑗) 

The evolution of the quantum wavefunction 𝜓 ∈ 𝐿2(𝑀) is then described by the time-

dependent Schrödinger equation: 
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 𝑖ℏ
∂𝜓

∂𝑡
= �̂�𝜓 = −

ℏ2

2𝑚
Δ𝑔𝜓 

Thus, the study of quantum mechanics on curved manifolds relies heavily on the geometric 

and topological properties of 𝑀, making the interplay between geometry and physics essential 

for understanding the dynamics of particles in such environments. 

 

figureRepresentation of the wavefunction 𝜓 on the curved manifold 𝑀.  

Riemann manifolds provide a rich mathematical framework for describing curved 

spaces, which is essential for understanding both classical and quantum mechanics in general 

settings. This article aims to bridge the gap between the classical description of particle motion 

on curved surfaces and the quantum mechanical treatment of particles in such environments. 

2  Classical Mechanics on Riemann Manifolds 

2.1  Geodesics and the Principle of Least Action 

On a Riemannian manifold (𝑀, 𝑔), the motion of a free particle follows geodesics. 

These are curves 𝛾(𝑡) that minimize the action 𝑆, defined as: 

 𝑆[𝛾] = ∫
𝑡2

𝑡1
𝐿(𝛾(𝑡), �̇�(𝑡)) 𝑑𝑡 

where 𝐿 is the Lagrangian. In classical mechanics, the Lagrangian for a free particle on a 

Riemannian manifold is given by: 

 𝐿(𝛾(𝑡), �̇�(𝑡)) =
1

2
𝑔𝑖𝑗(𝛾(𝑡))�̇�𝑖(𝑡)�̇�𝑗(𝑡) 

Here, 𝑔𝑖𝑗 are the components of the metric tensor, and �̇�(𝑡) represents the velocity along the 

geodesic. 

 

figureThe geodesic curve 𝛾(𝑡) on a manifold 𝑀.  

2.2  The Geodesic Equation 

By applying the Euler-Lagrange equations to the Lagrangian, we obtain the geodesic 

equation: 

 
𝑑2𝑥𝑘

𝑑𝑡2 + Γ𝑖𝑗
𝑘 𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑗

𝑑𝑡
= 0 

where Γ𝑖𝑗
𝑘 are the Christoffel symbols, given by: 
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 Γ𝑖𝑗
𝑘 =

1

2
𝑔𝑘𝑙 (

∂𝑔𝑖𝑙

∂𝑥𝑗 +
∂𝑔𝑗𝑙

∂𝑥𝑖 −
∂𝑔𝑖𝑗

∂𝑥𝑙 ) 

These symbols account for the curvature of the manifold, and the geodesic equation governs 

the trajectory of a particle. 

 

figureChristoffel symbols Γ𝑖𝑗
𝑘 controlling the curvature.  

2.3  Hamilton’s Formulation 

In Hamiltonian mechanics, we describe the dynamics on the cotangent bundle 𝑇∗𝑀. 

The Hamiltonian function for a free particle on a Riemannian manifold is: 

 𝐻(𝑥, 𝑝) =
1

2
𝑔𝑖𝑗(𝑥)𝑝𝑖𝑝𝑗 

where 𝑝𝑖 are the conjugate momenta. Hamilton’s equations are then given by: 

 
𝑑𝑥𝑖

𝑑𝑡
=

∂𝐻

∂𝑝𝑖
= 𝑔𝑖𝑗(𝑥)𝑝𝑗 

and 

 
𝑑𝑝𝑖

𝑑𝑡
= −

∂𝐻

∂𝑥𝑖 = −
1

2

∂𝑔𝑗𝑘

∂𝑥𝑖 𝑝𝑗𝑝𝑘 

 

figure Phase space evolution using Hamilton’s equations.  

This formulation provides an alternative way of understanding particle motion on 

Riemann manifolds, utilizing both position 𝑥𝑖 and momenta 𝑝𝑖 to describe the state of the 

system. 

2.4  Geodesics and the Principle of Least Action 

On a Riemann manifold (𝑀, 𝑔), where 𝑀 is a smooth manifold and 𝑔 is a Riemannian 

metric, the motion of a free particle is described by geodesics. These are curves 𝛾(𝑡) that 

minimize the action: 

 𝑆[𝛾] = ∫
𝑡2

𝑡1
𝐿(𝛾(𝑡), �̇�(𝑡))𝑑𝑡 (1) 
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where the Lagrangian 𝐿 is given by: 

 𝐿(𝛾(𝑡), �̇�(𝑡)) =
1

2
𝑔𝑖𝑗(𝛾(𝑡))�̇�𝑖(𝑡)�̇�𝑗(𝑡) (2) 

2.5  The Geodesic Equation 

 

The Euler-Lagrange equations lead to the geodesic equation: 

 
𝑑2𝑥𝑘

𝑑𝑡2 + Γ𝑖𝑗
𝑘 𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑗

𝑑𝑡
= 0 (3) 

where Γ𝑖𝑗
𝑘 are the Christoffel symbols: 

 Γ𝑖𝑗
𝑘 =

1

2
𝑔𝑘𝑙 (

∂𝑔𝑖𝑙

∂𝑥𝑗 +
∂𝑔𝑗𝑙

∂𝑥𝑖 −
∂𝑔𝑖𝑗

∂𝑥𝑙 ) (4) 

2.6  Hamilton’s Formulation 

The Hamiltonian formulation on a Riemann manifold involves the cotangent bundle 

𝑇∗𝑀. The Hamiltonian is: 

 𝐻(𝑥, 𝑝) =
1

2
𝑔𝑖𝑗(𝑥)𝑝𝑖𝑝𝑗 (5) 

Hamilton’s equations are: 

 
𝑑𝑥𝑖

𝑑𝑡
=

∂𝐻

∂𝑝𝑖
= 𝑔𝑖𝑗(𝑥)𝑝𝑗 (6) 

 
𝑑𝑝𝑖

𝑑𝑡
= −

∂𝐻

∂𝑥𝑖 = −
1

2

∂𝑔𝑗𝑘

∂𝑥𝑖 𝑝𝑗𝑝𝑘 (7) 

3  Quantum Mechanics on Riemann Manifolds 

In quantum mechanics, the behavior of particles on Riemannian manifolds is governed 

by the Schrödinger equation. When the underlying space is a curved manifold (𝑀, 𝑔), the 

Hamiltonian operator includes the geometric properties of the space. The key operator in 

quantum mechanics on manifolds is the Laplace-Beltrami operator, which generalizes the 

Laplacian in Euclidean space. 

3.1  The Quantum Hamiltonian 

The quantum Hamiltonian for a free particle of mass 𝑚 on a Riemannian manifold 

(𝑀, 𝑔) is given by: 

 �̂� = −
ℏ2

2𝑚
Δ𝑔 

where Δ𝑔 is the Laplace-Beltrami operator. In local coordinates (𝑥1, 𝑥2, … , 𝑥𝑛), the Laplace-

Beltrami operator is expressed as: 

 Δ𝑔 =
1

√|𝑔|

∂

∂𝑥𝑖 (√|𝑔|𝑔𝑖𝑗 ∂

∂𝑥𝑗) 
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Here, 𝑔𝑖𝑗 represents the components of the inverse metric tensor, and |𝑔| is the determinant 

of the metric tensor 𝑔. 

 

figureComponents of the Laplace-Beltrami operator on 𝑀.  

3.2  Schrödinger Equation on a Riemannian Manifold 

The time-dependent Schrödinger equation for a particle on a manifold is: 

 𝑖ℏ
∂𝜓

∂𝑡
= �̂�𝜓 

Substituting the Hamiltonian, we have: 

 𝑖ℏ
∂𝜓

∂𝑡
= −

ℏ2

2𝑚
Δ𝑔𝜓 

This equation describes the time evolution of the wavefunction 𝜓(𝑥, 𝑡), which is defined on 

the manifold 𝑀. In the stationary case, we consider solutions of the form 𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝑒−𝑖𝐸𝑡/ℏ, 

where 𝐸 is the energy of the system. This leads to the time-independent Schrödinger equation: 

 −
ℏ2

2𝑚
Δ𝑔𝜓(𝑥) = 𝐸𝜓(𝑥) 

 

figureWavefunction 𝜓(𝑥, 𝑡) evolving on the manifold 𝑀.  

3.3  Quantum States and Eigenfunctions 

On a Riemannian manifold, the eigenfunctions 𝜓𝑗(𝑥) of the Laplace-Beltrami operator 

satisfy the equation: 

 Δ𝑔𝜓𝑗(𝑥) = 𝜆𝑗𝜓𝑗(𝑥) 

where 𝜆𝑗 are the eigenvalues associated with the operator Δ𝑔. The corresponding energy levels 

are given by: 

 𝐸𝑗 =
ℏ2

2𝑚
𝜆𝑗 

The eigenfunctions 𝜓𝑗(𝑥) form an orthonormal basis for the space of quantum states on the 

manifold, and the evolution of any quantum state can be described as a superposition of these 

eigenfunctions. 
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3.4  Path Integrals on Riemann Manifolds 

Another formulation of quantum mechanics on manifolds involves path integrals. The 

Feynman path integral formulation expresses the probability amplitude as a sum over all 

possible paths that a particle can take between two points. On a Riemannian manifold, the 

action 𝑆 for a particle moving along a path 𝛾(𝑡) is: 

 𝑆[𝛾] = ∫
𝑡2

𝑡1

1

2
𝑚𝑔𝑖𝑗(𝛾(𝑡))�̇�𝑖(𝑡)�̇�𝑗(𝑡) 𝑑𝑡 

The quantum amplitude is then given by the integral over all possible paths: 

 〈𝑥2, 𝑡2|𝑥1, 𝑡1〉 = ∫ 𝒟[𝛾(𝑡)]𝑒𝑖𝑆[𝛾]/ℏ 

 

figureA path 𝛾(𝑡) connecting two points on the manifold 𝑀.  

3.5  Curvature and Quantum Effects 

Curvature plays a significant role in quantum mechanics on Riemannian manifolds. 

The curvature of the manifold affects the dynamics of quantum particles. For instance, the 

presence of positive curvature focuses the wavefunction, while negative curvature tends to 

disperse it. This phenomenon can be understood through the behavior of the Laplace-Beltrami 

operator, which encodes the curvature of 𝑀. 

The Ricci curvature tensor 𝑅𝑖𝑗 appears naturally in quantum field theory and in the 

study of heat kernels on manifolds. It affects the long-time behavior of quantum systems and 

the propagation of waves. The heat kernel 𝐾(𝑡, 𝑥, 𝑦), which solves the heat equation: 

 
∂𝐾(𝑡,𝑥,𝑦)

∂𝑡
= Δ𝑔𝐾(𝑡, 𝑥, 𝑦) 

encodes geometric information about the manifold and plays a crucial role in quantum 

mechanics, especially in determining spectral properties. 

 

figureThe heat kernel 𝐾(𝑡, 𝑥, 𝑦) on a curved manifold.  
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Thus, quantum mechanics on a Riemannian manifold is deeply intertwined with the 

geometry of the manifold, and the interplay between curvature and quantum behavior leads 

to many interesting phenomena. 

3.6  The Schrödinger Equation 

The transition from classical to quantum mechanics on a Riemann manifold involves 

replacing the classical momentum 𝑝𝑖 with the operator −𝑖ℏ∇𝑖, where ∇𝑖 is the covariant 

derivative. The Schrödinger equation on a Riemann manifold takes the form: 

𝑖ℏ
∂𝜓

∂𝑡
= −

ℏ2

2𝑚
Δ𝑔𝜓 + 𝑉𝜓  (8) 

where Δ𝑔 is the Laplace-Beltrami operator: 

Δ𝑔 =
1

√|𝑔|
∂𝑖(√|𝑔|𝑔𝑖𝑗 ∂𝑗)  (9) 

3.7  Path Integral Formulation 

Feynman’s path integral approach can be generalized to Riemann manifolds. The 

propagator is given by: 

𝐾(𝑥, 𝑡; 𝑥′, 𝑡′) = ∫ 𝒟[𝛾]exp (
𝑖

ℏ
𝑆[𝛾])  (10) 

where the integration is over all paths 𝛾 connecting (𝑥′, 𝑡′) to (𝑥, 𝑡), and 𝑆[𝛾] is the 

action along the path.  

4  Main Results 

In this section, we present the main theoretical results of this paper. These include 

important lemmas, propositions, and theorems that establish the behavior of classical and 

quantum systems on Riemannian manifolds. We also derive corollaries from these theorems 

to highlight key implications. 

4.1  Geodesic Flow on Riemannian Manifolds 

We begin by considering the geodesic flow on a Riemannian manifold (𝑀, 𝑔). The 

geodesics, 𝛾(𝑡), are the solutions to the geodesic equation, and they describe the motion of 

free particles. 

Lemma 1 Let (𝑀, 𝑔) be a Riemannian manifold. The geodesic flow 𝜙𝑡 on the cotangent 

bundle 𝑇∗𝑀 is Hamiltonian with respect to the symplectic form 𝜔 on 𝑇∗𝑀. The Hamiltonian function 

is given by:  

 𝐻(𝑥, 𝑝) =
1

2
𝑔𝑖𝑗(𝑥)𝑝𝑖𝑝𝑗 

where 𝑝𝑖 are the components of the conjugate momenta.  

Proof. The geodesic flow is governed by the Hamiltonian system:  

 
𝑑𝑥𝑖

𝑑𝑡
=

∂𝐻

∂𝑝𝑖
,    

𝑑𝑝𝑖

𝑑𝑡
= −

∂𝐻

∂𝑥𝑖 
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Substituting the Hamiltonian function:  

 
𝑑𝑥𝑖

𝑑𝑡
= 𝑔𝑖𝑗(𝑥)𝑝𝑗 ,    

𝑑𝑝𝑖

𝑑𝑡
= −

1

2

∂𝑔𝑗𝑘

∂𝑥𝑖 𝑝𝑗𝑝𝑘 

which matches the geodesic equation in local coordinates. The symplectic form 𝜔 = 𝑑𝑝𝑖 ∧ 𝑑𝑥𝑖 

ensures that the flow is Hamiltonian.  

Theorem 1 (Conservation of Energy) For any geodesic 𝛾(𝑡) on the Riemannian manifold 

(𝑀, 𝑔), the Hamiltonian 𝐻(𝑥, 𝑝) is conserved along the flow, i.e.,  

 
𝑑

𝑑𝑡
𝐻(𝑥(𝑡), 𝑝(𝑡)) = 0 

This implies that the energy of the particle moving along the geodesic is constant.  

Proof. By the chain rule:  

 
𝑑𝐻

𝑑𝑡
=

∂𝐻

∂𝑥𝑖

𝑑𝑥𝑖

𝑑𝑡
+

∂𝐻

∂𝑝𝑖

𝑑𝑝𝑖

𝑑𝑡
 

Using Hamilton’s equations:  

 
𝑑𝐻

𝑑𝑡
=

∂𝐻

∂𝑥𝑖 𝑔𝑖𝑗𝑝𝑗 +
∂𝐻

∂𝑝𝑖
(−

∂𝐻

∂𝑥𝑖) = 0 

Hence, the Hamiltonian is conserved.  

4.2  Spectral Theory of the Laplace-Beltrami Operator 

Next, we investigate the spectral properties of the Laplace-Beltrami operator on a 

compact Riemannian manifold. 

 Let (𝑀, 𝑔) be a compact Riemannian manifold, and let Δ𝑔 be the Laplace-Beltrami 

operator. The spectrum of Δ𝑔 is discrete, consisting of a sequence of eigenvalues:  

 0 = 𝜆0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ → ∞ 

Each eigenvalue 𝜆𝑗 has finite multiplicity.  

Proof. The operator Δ𝑔 is a second-order elliptic differential operator. On a compact 

manifold, elliptic operators have discrete spectra, and the corresponding eigenfunctions 𝜓𝑗 

form a complete orthonormal basis for 𝐿2(𝑀). The eigenvalue problem Δ𝑔𝜓𝑗 = 𝜆𝑗𝜓𝑗 leads to 

the stated result.  

Theorem 2 (Weyl's Law) For a compact Riemannian manifold (𝑀, 𝑔), the number of eigenvalues 𝜆𝑗 

of the Laplace-Beltrami operator 𝛥𝑔 that are less than or equal to 𝜆 satisfies the asymptotic relation:  

 𝑁(𝜆) = #{𝑗|𝜆𝑗 ≤ 𝜆}~
𝑉𝑜𝑙(𝑀)

(4𝜋)𝑛/2

𝜆𝑛/2

Γ(1+𝑛/2)
 

as 𝜆 → ∞, where 𝑛 is the dimension of the manifold and 𝑉𝑜𝑙(𝑀) is the volume of 𝑀.  
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Proof. This is a classical result in spectral geometry, known as Weyl’s law. It follows 

from the asymptotic analysis of the heat kernel 𝐾(𝑡, 𝑥, 𝑦) on 𝑀, which satisfies the heat 

equation:  

 
∂

∂𝑡
𝐾(𝑡, 𝑥, 𝑦) = Δ𝑔𝐾(𝑡, 𝑥, 𝑦) 

The asymptotic expansion of the heat kernel leads to the stated relation between the number 

of eigenvalues and 𝜆.  

4.3  Quantum Mechanics on Riemann Manifolds 

We now turn our attention to quantum systems on Riemannian manifolds, where the 

Laplace-Beltrami operator plays the role of the kinetic energy in the Schrödinger equation. 

Theorem 3 (Energy Quantization) Let (𝑀, 𝑔) be a compact Riemannian manifold, and 

consider the Schrödinger equation:  

 −
ℏ2

2𝑚
Δ𝑔𝜓 = 𝐸𝜓 

The energy levels 𝐸𝑗 are quantized and given by:  

 𝐸𝑗 =
ℏ2

2𝑚
𝜆𝑗 

where 𝜆𝑗 are the eigenvalues of the Laplace-Beltrami operator Δ𝑔.  

Proof. The Schrödinger equation in quantum mechanics on a Riemannian manifold is 

equivalent to the eigenvalue problem for the Laplace-Beltrami operator. Since the spectrum 

of Δ𝑔 is discrete, the energy levels are also discrete and are determined by the eigenvalues 𝜆𝑗 

of Δ𝑔.  

 For a quantum particle on a compact Riemannian manifold, the energy spectrum is 

bounded below, with the ground-state energy given by 𝐸0 = 0. All higher energy levels are 

positive and discrete.  

4.4  Curvature and Quantum Dynamics 

The curvature of the Riemannian manifold has a direct effect on the behavior of 

quantum systems. 

 Let (𝑀, 𝑔) be a Riemannian manifold, and let 𝑅𝑖𝑗 be the Ricci curvature tensor. The 

curvature influences the propagation of the quantum wavefunction 𝜓(𝑥, 𝑡) by affecting the 

dispersion of waves. Specifically, negative curvature enhances the dispersion, while positive 

curvature tends to focus the wavefunction.  

Proof. The propagation of quantum wavefunctions is governed by the Schrödinger 

equation, which involves the Laplace-Beltrami operator. The behavior of the Laplace-Beltrami 

operator is sensitive to the curvature of the manifold, as the eigenfunctions of Δ𝑔 reflect the 

geometric structure of 𝑀. In negatively curved spaces, geodesics tend to diverge, leading to 
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greater dispersion of waves, while in positively curved spaces, geodesics tend to converge, 

leading to focusing of waves.  

 On a manifold with negative Ricci curvature, quantum particles tend to spread out 

more rapidly, while on manifolds with positive Ricci curvature, quantum particles exhibit 

more localized behavior.   

5  Numerical Examples 

In this section, we present two numerical examples that illustrate the application of 

the mathematical formulations derived in the previous sections. These examples demonstrate 

the behavior of particles on Riemannian manifolds in both classical and quantum settings. 

5.1  Example 1: Geodesics on a 2D Sphere 

Consider a particle moving on the surface of a 2D sphere 𝑆2 with radius 𝑅. The 

Riemannian metric in spherical coordinates (𝜃, 𝜙) is given by: 

 𝑑𝑠2 = 𝑅2(𝑑𝜃2 + sin2𝜃 𝑑𝜙2) 

The geodesic equations for a particle on this surface are: 

 
𝑑2𝜃

𝑑𝑡2 − sin𝜃cos𝜃 (
𝑑𝜙

𝑑𝑡
)

2
= 0 

 
𝑑2𝜙

𝑑𝑡2 + 2cot𝜃
𝑑𝜃

𝑑𝑡

𝑑𝜙

𝑑𝑡
= 0 

Numerically, we solve these equations using the initial conditions 𝜃(0) =
𝜋

4
, 

𝑑𝜃

𝑑𝑡
(0) = 0, 𝜙(0) =

0, and 
𝑑𝜙

𝑑𝑡
(0) = 1. Using the Runge-Kutta method, the geodesic curve can be computed over 

a time interval 𝑡 ∈ [0,10]. 

 

Figure Geodesic curve on the 2D sphere 𝑆2.  

The resulting numerical solution shows that the particle follows a great circle on the 

surface of the sphere, which is expected for geodesic motion on 𝑆2. 

5.2  Example 2: Quantum Particle in a Potential Well on a 1D Manifold 

Next, we consider the problem of a quantum particle in a 1D potential well on the 

interval [0, 𝐿] with Dirichlet boundary conditions 𝜓(0) = 𝜓(𝐿) = 0. The time-independent 

Schrödinger equation is: 

 −
ℏ2

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2 = 𝐸𝜓(𝑥) 
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The eigenfunctions for this problem are given by: 

 𝜓𝑛(𝑥) = √
2

𝐿
sin (

𝑛𝜋𝑥

𝐿
) ,    𝑛 = 1,2,3, … 

and the corresponding eigenvalues (energy levels) are: 

 

 𝐸𝑛 =
𝑛2𝜋2ℏ2

2𝑚𝐿2 ,    𝑛 = 1,2,3, … 

Numerically, we compute the first three energy levels and plot the corresponding 

wavefunctions for 𝐿 = 1 and 𝑚 = 1 (in natural units) using a finite difference method. 

 

Figure Ground state wavefunction 𝜓1(𝑥) in the potential well.  

The numerical results confirm that the energy levels follow the expected quantization, 

and the wavefunctions exhibit the characteristic sinusoidal form with increasing numbers of 

nodes as 𝑛 increases. 

6  Examples and Applications 

6.1  Particle on a Sphere 

Consider a particle constrained to move on the surface of a sphere of radius 𝑅. The 

metric in spherical coordinates (𝜃, 𝜙) is: 

 𝑑𝑠2 = 𝑅2(𝑑𝜃2 + sin2𝜃𝑑𝜙2) (11) 

The classical Hamiltonian is: 

 𝐻 =
1

2𝑚𝑅2 (
𝑝𝜃

2

sin2𝜃
+ 𝑝𝜙

2 ) (12) 

The quantum Hamiltonian operator is: 

 �̂� = −
ℏ2

2𝑚𝑅2 (
1

sin𝜃

∂

∂𝜃
(sin𝜃

∂

∂𝜃
) +

1

sin2𝜃

∂2

∂𝜙2) (13) 

The eigenfunctions are the spherical harmonics 𝑌𝑙
𝑚(𝜃, 𝜙) with eigenvalues: 

 𝐸𝑙 =
ℏ2

2𝑚𝑅2 𝑙(𝑙 + 1),    𝑙 = 0,1,2, … (14) 
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6.2  Visualization of Geodesics on a Sphere 

 

Figure 1: Geodesics on a sphere. The red circle represents a great circle (shortest path), while 

the green ellipse shows a non-geodesic path. 

7 Conclusion 

The study of classical and quantum mechanics on Riemann manifolds reveals the deep 

connection between geometry and physics. This framework not only provides a more general 

setting for understanding particle dynamics but also paves the way for exploring quantum 

phenomena in curved spacetimes, which is crucial for reconciling quantum mechanics with 

general relativity. 
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