Vol.12.Issue.3.2024 (July-Sept) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

OBSERVATIONS ON THE HOMOGENEOUS CONE $x^2 + y^2 = 17 z^2$

Dr. N.Thiruniraiselvi^{1*}, Dr. M.A.Gopalan²

¹ Assistant Professor, Department of Mathematics, M.A.M. College of Engineering and Technology, Affiliated to Anna University (Chennai), Siruganur, Tiruchirapalli – 621105, Tamil Nadu, India. Email:drntsmaths@gmail.com

² Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Tiruchirapalli -620 002, Tamil Nadu, India. Email:mayilgopalan@gmail.com

DOI:10.33329/bomsr.12.3.43

ABSTRACT

Patterns of integer solutions to the homogeneous cone $x^2 + y^2 = 17 z^2$ are presented.

Keywords: Homogeneous cone ,Ternary quadratic equation , Integer solutions

Introduction

It is quite obvious that Diophantine equations, one of the areas of number theory, are rich in variety [1-3]. In particular, the ternary quadratic Diophantine equations in connection with geometrical figures occupy a pivotal role in the orbit of mathematics and have a wealth of historical significance. In this context, one may refer [4-10] for second degree Diophantine equations with three unknowns representing different geometrical figures.

In this paper, the ternary quadratic Diophantine equation representing cone given by $x^2 + y^2 = 17z^2$ is studied for determining its integer solutions successfully through elementary algebra.

Method of analysis

The ternary quadratic equation representing homogeneous cone under consideration is

$$x^2 + y^2 = 17z^2$$
(1)

The process of obtaining patterns of integer solutions to (1) are illustrated below :

Pattern 1

Assume

$$z = a^2 + b^2 \tag{2}$$

Express the integer 17 on the R.H.S. of (1) as the product of complex conjugates as

$$17 = (4 + i)(4 - i)$$
 (3)

Substituting (2) & (3) in (1) and employing the method of factorization, consider

$$x + i y = (4 + i) (a + i b)^{2}$$

= (4 + i)[f (a, b) + i g(a, b)] (4)

where

$$f(a,b) = a^2 - b^2$$
, $g(a,b) = 2ab$

Equating the real and imaginary parts in (4), we have

$$x = 4f(a,b) - g(a,b), y = f(a,b) + 4g(a,b).$$
 (5)

Thus,(2) & (5) satisfy (1).

Pattern 2

One may also write the integer 17 on the R.H.S. of (1) as the product of complex conjugates as

$$17 = (1+4i)(1-4i) \tag{6}$$

Following the procedure similar to Pattern 1, we get

$$x = f(a,b) - 4g(a,b), y = 4f(a,b) + g(a,b).$$
(7)

Thus,(2) & (7) satisfy (1).

Pattern 3

Let

$$f(u, v, p, q) = u(p2 - q2) + v(2pq) ,$$

g(u, v, p, q) = u(2pq) - v(p² - q²) (8)

where

p,q(p > q > 0) represent the generators of a Pythagorean triangle and

$$17 = u^2 + v^2$$
.

Taking u = 4, v = 1 in (8), we get

$$f(4,1,p,q) = 4(p^2 - q^2) + (2pq),$$

$$g(4,1,p,q) = 4(2pq) - (p^2 - q^2)$$

Observe that

$$17 = \frac{[f(4,1,p,q) + ig(4,1,p,q)][f(4,1,p,q) - ig(4,1,p,q)]}{(p^2 + q^2)^2}$$
(9)

Substituting (2) & (9) in (1) and employing the method of factorization ,

consider

$$x + iy = \frac{[f(4,1,p,q) + ig(4,1,p,q)]}{(p^2 + q^2)} [f(a,b) + ig(a,b)]$$
(10)

Taking

$$a = (p^2 + q^2) A, b = (p^2 + q^2) B$$
 (11)

in (10) and equating the coefficients of corresponding terms, we have

$$x = (p^{2} + q^{2})[f(4,1,p,q)f(A,B) - g(4,1,p,q)g(A,B)],$$

$$y = (p^{2} + q^{2})[f(4,1,p,q)g(A,B) + g(4,1,p,q)f(A,B)].$$
(12)

From (11) and (2), we obtain

$$z = (p^{2} + q^{2})^{2} (A^{2} + B^{2})$$
(13)

Thus,(12) and (13) satisfy (1).

Example :

Let
$$A = 2, B = 1, p = 3, q = 2$$

 $f(4,1,3,2) = 32, g(4,1,3,2) = 43, f(A,B) = 3, g(A,B) = 4$
 $17 = \frac{(32 + i43)(32 - i43)}{13^2}$

From (12) and (13), we have

$$x = -13*76, y = 13*257, z = 5*169$$

which satisfy (1).

Pattern 4

Write (1) as

$$17z^2 - y^2 = x^2 * 1 \tag{14}$$

Assume

$$x = 17a^2 - b^2$$
(15)

Express the integer 1 on the R.H.S. of (14) as

$$1 = (\sqrt{17} + 4)(\sqrt{17} - 4) \tag{16}$$

Substituting (15) & (16) in (14) and using factorization, we have

$$\sqrt{17} z + y = (\sqrt{17} + 4) (\sqrt{17} a + b)^2 = (\sqrt{17} + 4) (17a^2 + b^2 + \sqrt{17} 2ab)$$

Equating the rational and irrational parts in the above equation, we have

$$y = 4(17a^{2} + b^{2}) + 34ab,$$

$$z = (17a^{2} + b^{2}) + 8ab$$
(17)

Thus,(15) & (17) satisfy (1).

Pattern 5

Apart from (16), the integer 1 on the R.H.S. of (14) may be written as

$$1 = \frac{(\sqrt{17} + 1)(\sqrt{17} - 1)}{16} \tag{18}$$

Substituting (15) & (18) in (14) and using factorization, we have

$$\sqrt{17} z + y = \frac{(\sqrt{17} + 1)}{4} (\sqrt{17} a + b)^2 = \frac{(\sqrt{17} + 1)}{4} (17a^2 + b^2 + \sqrt{17} 2ab)$$

Equating the coefficients of corresponding terms, we get

$$y = \frac{1}{4} (17 a^{2} + b^{2} + 34 a b) ,$$

$$z = \frac{1}{4} (17 a^{2} + b^{2} + 2 a b) .$$
(19)

To obtain the solutions in integers ,we have to choose the values of a, b suitably in (19). The suitable choices to a, b and the corresponding solutions to (1) are presented below :

Choice 1

Take a = 2A, b = 2B

The corresponding integer solutions to (1) are given by

$$x = 4(17 A2 - B2),$$

$$y = (17 A2 + B2 + 34 A B),$$

$$z = (17 A2 + B2 + 2 A B).$$

Choice 2

Take a = 2A + 1, b = 2B + 1

The corresponding integer solutions to (1) are given by

$$\begin{aligned} x &= (68A^2 - 4B^2 + 68A - 4B + 16) ,\\ y &= (17A^2 + B^2 + 34AB + 34A + 18B + 13) ,\\ z &= (17A^2 + B^2 + 2AB + 18A + 2B + 5). \end{aligned}$$

Choice 3

Take a = (4n + 2k + 1)b

The corresponding integer solutions to (1) are given by

$$\begin{aligned} x &= [17(4n+2k+1)^2-1]b^2, \\ y &= (68n^2+17k^2+68nk+68n+34k+13)b^2 \\ z &= (68n^2+17k^2+68nk+36n+18k+5)b^2. \end{aligned}$$

Note 1

One may also choose the options given by

$$a = (4n - (2k + 1))b, b = (4n \pm (2k + 1))a$$

Thus, we get three more choices of integer solutions to (1).

Pattern 6

The substitution of the transformations

$$z = U + T, y = U + 17T, x = 4X$$
 (20)

in (1) leads to the homogeneous ternary quadratic equation

$$U^2 = X^2 + 17T^2$$
(21)

By scrutiny , it is seen that (21) is satisfied by

U = 9T, X = 8T

In view of (20), the integer solutions to (1) are given by

$$x = 32T, y = 26T, z = 10T$$

Note 2

In addition to (20), one may consider the transformations

$$z = U - T, y = U - 17T, x = 4X$$
 (22)

In this case, the integer solutions to (1) are given by

$$x = 32T, y = -8T, z = 8T$$

Pattern 7

Write (21) as the pair of equations

$$U + X = T^2$$
,
 $U - X = 17$.

Solving the above system of equations , we get

$$T = 2k + 1,$$

$$U = 2k^{2} + 2k + 9,$$

$$X = 2k^{2} + 2k - 8.$$

Employing (20), the integer solutions to (1) are given by

$$x = 4(2k^{2} + 2k - 8),$$

$$y = (2k^{2} + 36k + 26),$$

$$z = (2k^{2} + 4k + 10).$$

Note 3

Employing (22) ,the integer solutions to (1) are given by

$$x = 4(2k^{2} + 2k - 8),$$

$$y = (2k^{2} - 32k - 8),$$

$$z = (2k^{2} + 8).$$

Pattern 8

Write (21) as the pair of equations

$$U + X = 17 T^2$$
,
 $U - X = 1$.

Solving the above system of equations , we get

$$T = 2k + 1,$$

$$U = 34k^{2} + 34k + 9,$$

$$X = 34k^{2} + 34k + 8.$$

Employing (20), the integer solutions to (1) are given by

$$x = 4(34k^{2} + 34k + 8),$$

$$y = (34k^{2} + 68k + 26),$$

$$z = (34k^{2} + 36k + 10).$$

Note 4

Employing (22), the integer solutions to (1) are given by

$$x = 4(34k^{2} + 34k + 8),$$

$$y = (34k^{2} - 8),$$

$$z = (34k^{2} + 32k + 8).$$

Pattern 9

Rewrite (21) as

$$X^2 + 17T^2 = U^2 * 1$$
 (23)

Assume

$$U = 9(a^2 + 17b^2)$$
(24)

Express the integer 1 on the R.H.S. of (23) as

$$l = \frac{(8 + i\sqrt{17})(8 - i\sqrt{17})}{81}$$
(25)

Substituting (24) & (25) in (23) and applying factorization,

consider

$$X + i\sqrt{17} T = (8 + i\sqrt{17}) (a + i\sqrt{17} b)^2$$

Equating the coefficients of corresponding terms in the above

equation ,we have

$$X = 8(a2 - 17b2) - 34ab,$$

T = (a² - 17b²) + 16ab.

In view of (20), the integer solutions to (1) are given by

$$x = 32(a2 - 17b2) - 136ab,$$

y = 26 a² - 136b² + 272ab,
z = 10 a² + 136b² + 16ab.

Note 5

Employing (22), the integer solutions to (1) are given by

$$x = 32(a2 - 17b2) - 136ab,$$

$$y = -8 a2 + 442b2 - 272ab,$$

$$z = 8 a2 + 170b2 - 16ab.$$

Note 6

In addition to (25), the integer 1 on the R.H.S. of (23) may be represented as follows :

$$1 = \frac{(4 + i \sqrt{17})(4 - i \sqrt{17})}{169},$$

$$1 = \frac{(17r^2 - s^2 + i \sqrt{17} 2rs)(17r^2 - s^2 - i \sqrt{17} 2rs)}{(17r^2 + s^2)^2}$$

The repetition of the above process gives two more choices of integer solutions to (1).

Conclusion

In this paper, the homogeneous ternary quadratic equation representing homogeneous cone given by $x^2 + y^2 = 17z^2$ is studied for obtaining its integer solutions through substitution technique and factorization method. One may search for other forms of quadratic equations with multiple variables to determine their integer solutions.

References

 L.E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing Company, NewYork, 1952.

https://archive.org/details/historyoftheoryo01dick/page/n1/mode/2up

- [2] L.J. Mordell, Diophantine equations, Academic press, New York, 1969.
- [3] Diophantine Equations. By L. J. Mordell. Pp. 312. 1969. 90s. (Academic Press, London & amp; New York.) | The Mathematical Gazette | Cambridge Core
- [4] M.A.Gopalan, S.Vidhyalakshmi and T.R.Usharani, Integral Points on the Nonhomogeneous Cone $2z^2 + 4xy + 8x - 4z + 2 = 0$, Global Journal of Mathematics and Mathematical Sciences, Vol. 2(1), Pp. 61-67, 2012.

https://www.ripublication.com/Volume/gjmmsv2n1.htm

[5] M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, Observations on the ternary quadratic Diophantine equation $x^2 + 9y^2 = 50z^2$, International Journal of Applied Research, Vol.1 (2), Pp.51-53, 2015.

https://www.allresearchjournal.com/archives/2015/vol1issue2/PartB/60.1-590.pdf

- [6] M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, Construction of Diophantine quadruple through the integer solution of ternary quadratic Diophantine equation $x^2 + y^2 = z^2 + 4n$, International Journal of Innovative Research in Engineering and Science, Vol.5(4), Pp.1-7, May-2015
- [7] M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, Observations on the cone $z^2 = ax^2 + a(a-1)y^2$, International Journal of Multidisciplinary Research and Development, Vol.2 (9), Pp.304-305, Sep-2015.

https://www.allsubjectjournal.com/assets/archives/2015/vol2issue9/164.pdf

[8] M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, A Study on Special Homogeneous Cone $z^2 = 24x^2 + y^2$, Vidyabharati International Interdisciplinary Research Journal, (Special Issue on "Recent Research Trends in Management, Science and Technology"-Part-3, pdf page- 330), Pg: 1203-1208, 2021.

https://www.viirj.org/specialissues/SP10/Part%203.pdf

[9] M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, On the Homogeneous Ternary Quadratic Diophantine Equation $6x^2 + 5y^2 = 341z^2$, Vidyabharati International

Interdisciplinary Research Journal, (Special Issue on "Recent Research Trends in Management, Science and Technology"-Part-4, pdf page- 318), Pg: 1612-1617, 2021.

https://www.viirj.org/specialissues/SP10/Part%204.pdf

[10] M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, A class of new solutions in integers to Ternary Quadratic Diophantine Equation $12(x^2 + y^2) - 23xy + 2x + 2y + 4 = 56z^2$, International Journal of Research Publication and Reviews, Vol 5 (5), Page – 3224-3226, May (2024).

https://www.ijrpr.com/current_issues.php