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ABSTRACT 

We present a comprehensive stochastic model designed for a single-

server finite capacity Markovian queuing system, which captures 

several intricate features commonly observed in real-world queuing 

scenarios. Specifically, the model incorporates encouraged arrivals, 

threshold limits, balking and position-dependent reneging. These 

characteristics reflect the complexities of real-world queuing systems. 

Our model is unique in integrating all these elements into a single 

framework, a novel approach not seen in prior research. This novel 

approach provides valuable insights into the interplay of these factors 

and lays the groundwork for further research and practical 

applications in the design and analysis of queueing systems. Using 

Markov process methods and probability generating functions 

(p.g.f’s), we derive steady-state probabilities that describe the long-

term behaviour of the system. These steady-state probabilities form 

the backbone of our analysis, providing insights into the distribution 

of customers within the queue and the server under various 

operational conditions. Building upon this foundation, we further 

develop closed form expressions for several key performance 

measures, which are critical for assessing the functionality and 

efficiency of the queuing system. Additionally, we introduce some 
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freshly designed measures to evaluate the system’s effectiveness 

better. A comprehensive sensitivity analysis explores how varying 

parameters impact performance, offering insights into the model’s 

robustness under different conditions. To demonstrate its practical 

utility, we provide a numerical example that showcases the analytical 

results and highlights the system’s flexibility and applicability to real-

life scenarios. This work contributes significantly to understanding 

and optimizing complex queuing systems. 

 
Keywords. Markovian, threshold limit, encouraged arrival, position-
dependent reneging. 
Mathematics Subject Classification (2020). 60K25, 68M20, 90B22. 
 

 

1 INTRODUCTION 

Managing the flow of customers is essential for businesses to run smoothly and deliver 

quality service. Queueing systems play a key role in this process, helping organizations reduce 

wait times, improve efficiency and enhance the overall customer experience. By studying how 

queues function, businesses can make smarter decisions about allocating resources, 

streamlining services and keeping customers engaged, ultimately staying competitive and 

delivering better performance. 

When customers arrive at a service facility, they may encounter busy servers and need 

to wait in line. However, not everyone is willing to wait. Some customers may choose to leave 

right away if the queue looks too long—a behavior known as balking. Others may initially 

join the queue but get impatient and leave before being served, which is called reneging. Take 

a hospital emergency room as an example. Patients often evaluate the waiting area, 

considering how many people are ahead of them and how long they think it will take to be 

seen. If the room is too crowded or the expected wait is too long, some might decide not to 

join the queue at all (balking). Others who start waiting might leave partway through 

(reneging), especially if they have alternatives like going to a different hospital or clinic. 

Understanding these behaviours has been a topic of interest for researchers for decades. 

Early studies by Barrer(1957a, 1957b), Haight(1957,1959), and others laid the foundation for 

analyzing balking and reneging. More recently, researchers have explored how these 

behaviours interact with complex queueing systems. For example, Bouchentouf et al. (2022) 

studied queues with features like feedback, breaks for servers, and customer impatience. 

Other studies, like those by Choudhury and Medhi (2011a, 2011b, 2011c) and Medhi and 

Choudhury (2023), have focused on specific behaviours like state-dependent balking and 

retaining customers who initially leave the queue. 

An emerging idea in queueing theory is encouraged arrivals. This happens when 

businesses use incentives like promotions or discounts to attract more customers. While these 

strategies can increase customer numbers and boost revenue, there’s a limit to how effective 

they can be. If the system becomes overwhelmed, customers might lose patience, introducing 

what researchers call a threshold. Beyond this point, customers get impatient and display 

reneging as well as balking. For example, shopping malls often use marketing campaigns to 



Vol. 12. Issue.4. 2024 (Oct-Dec) Bull .Math.&Stat .Res ( ISSN:2348 -0580)  
 

 

38 Pallabi Medhi, Dolismita Boruah 

draw crowds during sales or special events. Many malls also have waiting lounges with 

limited seating, creating a threshold where most customers are comfortable and less likely to 

leave. However, during peak times, those who can’t find a spot to wait comfortably may 

choose to leave instead of sticking around. This scenario illustrates how encouraged arrivals 

and thresholds interact in real-world settings. Previous studies, including those by Som and 

Seth (2017), examined M/M/1/N models with encouraged arrivals and their steady-state 

characteristics. Later research expanded on these concepts to include multi-server models and 

investigated reverse reneging phenomena. Rao, Kumar, and Kumar (2020) incorporated 

thresholds into finite-capacity Markovian systems featuring both encouraged and 

discouraged arrivals, whereas Ahmad and Jayalalitha (2021) focused on analysing steady-

state properties in related models. 

This research builds on these ideas by introducing a detailed model for managing 

queues in multi-server finite capacity settings. The model incorporates features like 

encouraged arrivals, thresholds, state-independent balking and position-dependent reneging 

to give businesses better tools for managing customer flow. It offers valuable insights for 

improving resource allocation, customer engagement, and service efficiency. The concepts are 

applicable to a range of scenarios, from restaurants to hospitals and shopping malls. 

The paper is organized as follows: Section 2 introduces the model and its assumptions, 

while Section 3 examines its steady-state behavior. Section 4 dives into performance metrics, 

followed by a practical example in Section 5 and sensitivity analysis in Section 6. The study 

concludes in Section 7, summarizing the key findings and future research opportunities. 

Detailed technical derivations are provided in the appendix. 

2 ASSUMPTIONS AND DESCRIPTION OF THE MODEL 

The suggested model operates under the following assumptions: 

1. The arrival process follows a Poisson distribution with a rate parameter λ. The encouraged 

arrival is taken as λ(1 + η) up to a specified threshold, where η represents the proportional 

increase in arrivals due to an incentive. The threshold system size is denoted by k. This 

threshold signifies that the increased arrival rate under the “encouraged arrival strategy” 

is only valid up to k. Beyond this point, the arrival rate reverts to λ as it is assumed that 

customers may lose patience and either abandon or decide not to join the system. 

Essentially, the encouraged strategy is effective only up to the threshold since prolonged 

waiting can lead to customer impatience, rendering the strategy ineffective. 

2. Service rate follows Poisson law with parameter µ. 

3. The reneging rate follows a Poisson distribution with a rate parameter α. Reneging occurs 

only when the system size exceeds the threshold k, meaning customers within the 

threshold do not renege. The reneging rate depends on the system’s state and is a function 

of the state of the system, i.e., position-dependent reneging. 

A customer who is at a position ‘n’ in the system will be assumed to have the reneging 

rate, 

𝑟(𝑛) = {
      0                     𝑓𝑜𝑟   0 ≤  𝑛 ≤  𝑘
(𝑛 −  𝑘)𝛼        𝑓𝑜𝑟   𝑛 ≥  𝑘 +  1

                                                 (2.1) 
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4. Customers have a probability ‘(1- ξ)’ of balking after the threshold value k. There is no 

balking before the threshold. 

5. There is only one server. 

6. System capacity is finite and restricted to N. 

7. Service discipline is of first come first serve (FCFS) type. 

8. Calling population is infinite. 

The application of our designated model is evident in hospital OPDs, especially for renowned 

doctors. In such OPDs, patients are typically willing to wait longer than usual. While a seating 

area (often equipped with chairs) is provided for waiting patients, its limited capacity means 

some patients have to stand nearby when seats are full. We define the number of seats as the 

threshold limit. Within this threshold, patients rarely leave before seeing the doctor, so our 

model assumes no reneging up to this limit. Due to the doctor’s reputation, patients are 

generally willing to wait even beyond the threshold, standing if necessary. However, patients 

who are standing are less comfortable and thus more likely to experience impatience of both 

types, balking (refusing to wait) as well as reneging (leaving before being seen). The doctor’s 

efficiency draws even more patients to the OPD, increasing the arrival rate, so our model also 

incorporates the concept of encouraged arrival. 

3 SYSTEM STATE PROBABILITIES 

In this section, steady state probabilities of the system are derived using Markov process 

method. The state transition diagram for the suggested model is given below: 

 

Figure 1: State transition diagram 

Using the “Rate in=Rate out” principle, from the transition diagram (Fig. 1) we get the 

following steady state equations. 

        µp1   = λ(1 + η)p0  ;       for n = 0 (3.1) 

  λ(1 + η)pn−1 + µpn+1   = [µ + λ(1 + η)]pn  ;        for n = 1,2,...,k − 1 (3.2) 

          λ(1 + η)pn−1 + (µ + α)pn+1 = (µ + λξ)pn  ;          for n = k (3.3) 

 λξpn−1+{µ+(n−k1)α}pn+1    = [{µ + (n − k)α} + λξ]pn  ;     for n=k+1,k+2,...,N−1              (3.4) 

      λξpn−1 = {µ + (n − k)α}pn; for n = N (3.5) 

 

Where, pn denotes the probability that there are n number of customers in the system, n = 

0,1,2,....N 

Solving the above equations, we get 
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𝑝𝑛  = {
[

𝜆(1+𝜂)

µ
]

𝑛
𝑝0                                    𝑓𝑜𝑟 𝑛 = 0,1,2, … , 𝑘

(
1+𝜂

µ𝜉
)

𝑘 (𝜆𝜉)𝑛

∏ (µ+𝑖𝛼)𝑛−𝑘
𝑖=1

 𝑝0          𝑓𝑜𝑟 𝑛 =  𝑘 +  1, 𝑘 + 2, … , 𝑁
                                           (3.6) 

We have, 

∑ 𝑝𝑛 = 1

𝑁

𝑛=0

 

Using this condition, we obtain 

                      (3.7) 

4 PERFORMANCE MEASURES 

1. Expected system size (𝑳): Let, 𝑃(𝑠) be the p.g.f of the steady-state probabilities. 

Subsequently, we find that, 

 𝐿 = ∑ 𝑛𝑝𝑛
𝑁
𝑛=0  

 

The derivation of 𝑃 ′(1) is given in the Appendix section. From the Appendix, the expected 

system size is, 

  

2. Expected queue size (Lq): The expected queue size is given by the formula, 

 𝐿𝑞 = ∑ (𝑛 − 1)𝑝𝑛
𝑁
𝑛=2  

       = 𝐿 + 𝑝0 + 1  

    (4.2) 

Using Little’s formula (L = λW or LQ = λWQ) one can obtain the expected waiting time in 

system, W and expected waiting time in queue WQ. 

3. Effective arrival rate (λe): Customers enter the system at an increased arrival rate of 

λ(1 + η) until the system size reaches the threshold k. Beyond this threshold, the arrival rate 

decreases to λ. However, not all arriving customers choose to join the system due to balking. 

As a result, the effective arrival rate of customers entering the system differs from the overall 

arrival rate and is expressed as: 
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                                                                                      (4.3) 

4. Average reneging rate (αA): Since a position dependent reneging rate is assumed, the 

reneging rate of the system will vary based on its current state. The average reneging rate is 

given by, 

 

 

5. Probability that a customer will join the system within the threshold given that 

he/she is not turned away due to finite buffer restriction (γ): It is assumed that customers 

are encouraged up to the threshold limit k. Any encouraging strategy developed by the 

business organization will work until the system size reaches the threshold value k, after that 

customer impatience can be observed. The probability that a customer will join the system 

within the threshold, provided they are not rejected due to finite buffer limitations can be 

expressed as, 

                                                     (4.5)  

6. Proportion of customers lost due to reneging (Pα): In real-world situations, when 

customers leave the queue (reneging) due to impatience, it leads to a loss of business. 

Businesses are keen to understand how many customers are being lost, as this gives a clear 

picture of the overall impact on revenue. With this information, management can take steps 

to address the issue and minimize these losses. 

The proportion of customers lost as a result of reneging is given by, 

                    (4.6) 

7.   Average arrival rate (post-threshold) adjusted for balking (λPT ): 

= λξ ∑ 𝑝𝑛
𝑁=1
𝑛=𝑘                                                                   (4.7) 
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8. Proportion of customers lost due to balking and finite buffer restriction (PB+F ): The 

proportion of customers lost due to balking and limited space shows how many customers 

either decide not to join or are turned away because the system is full. The proportion of 

customers lost as a result of balking and finite buffer restriction is given by, 

                                                (4.8) 

9 Proportion of total customers lost (PT ): In a finite buffer queue, some customers are 

lost because they leave the queue (reneging), decide not to join (balking) or are turned away 

when the system is full. So, the proportion of total customers lost can be obtained by 

combining the proportion of customers lost due to reneging, balking and finite buffer 

restriction and is expressed as, 

                                       (4.9) 

10  Actual server load or Arrival rate of customers reaching service station (λs): 

Customers who leave the queue before being served don’t contribute to the server’s workload. 

So, the server’s workload depends only on the customers who stay and get served. This helps 

in measuring the server’s actual workload.  

                  λs=λe(1-proportion of customers lost due to reneging out of those joining the system) 

                                                     (4.10) 

5. NUMERICAL EXAMPLE 

To illustrate the usefulness of our suggested model, we consider the following example from 

Taha (2013). 

“Patients arrive at a 1-doctor clinic according to a Poisson distribution at the rate of 20 patients per 

hour. The waiting room doesn’t accommodate more than 14 patients. Examination time per patient is 

exponential, with a mean of 8 minutes. (a) What is the probability that an arriving patient will not 

wait? (b) What is the probability that an arriving patient will find a seat in the room? (c) What is the 

expected total time a patient spends in the clinic?” 

The features of the above queuing system fit the features of our assuming queuing model. We 

recall that our queuing model is a single server Markovian queuing system with encouraged 

arrival, threshold limit, balking and position dependent reneging. The above example 

describes a 1-doctor clinic. The Markovian assumptions are clearly stated. The existence of a 

threshold is also specific as the waiting room does not accommodate more than 14 patients. 

Including the one being served, the threshold will be 15. We shall additionally assume that 

because of the skill of the doctor, patients are willing to wait outside the waiting room. 

However, the space outside can hold a maximum of 11 patients. 

We assume that due to the doctor’s expertise, patients are consistently motivated to schedule 

appointments at the clinic. This aligns with our theoretical assumption of encouraged arrivals. 

Although it is mentioned that some patients may wait outside the main waiting room if 
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needed, there is no denying that this is considered a second preferenced choice. As a result, it 

is not surprising that patients in this waiting area may get impatient and could display 

reneging or balking. 

To make the given queuing system more realistic, we have assumed existence of a threshold 

limit, encouraged arrival, balking and position dependent reneging. To model different 

scenarios, we assume two sets of parameters. 

Table 1: performance measures when λ = 20/hr,µ = 8/hr,α = 0.5/hr,η = 0.3,ξ = 0.8, k = 15,N= 26 

Performance Measures   

Probability that the server remains idle 7.1*10−11 

Mean system size 23.5195 

Effective arrival rate 12.2608 

Actual server load 11.7543 

Average reneging rate 4.2608 

Proportion of customers lost due to reneging 0.3475 

Average arrival rate (post-threshold) adjusted for balking 15.9759 

Proportion of customers lost due to balking and finite buffer restriction 0.3257 

Proportion of total customers lost 0.6733 

Probability that a customer will join the system with threshold incentive 0.002 

 

Table 2: performance measures when λ = 20/hr, µ = 8/hr,α = 1/hr,η = 0.3,ξ = 0.6, k = 15, N= 26 

Performance Measures   

Probability that the server remains idle 1.5*10−9 

Mean system size 19.1873 

Effective arrival rate 12.2331 

Actual server load 8.2109 

Average reneging rate 4.2331 

Proportion of customers lost due to reneging 0.346 

Average arrival rate (post-threshold) adjusted for balking 11.4086 

Proportion of customers lost due to balking and finite buffer restriction 0.6322 

Proportion of total customers lost 0.9792 

Probability that a customer will join the system with threshold incentive 0.004 

 

Some interesting observations can be made from the above two scenarios. 

1. Probability that an arriving customer receives instant service goes up as the balking 

probability and reneging rate increases. This is expected. As more customers leave the 

system because of impatience (balking and reneging), the probability that the system is idle 

goes up. 

2. Mean system size decreases as balking and reneging increases. We reiterate that balking 

and reneging occurs only after the threshold. The expected size of the system has been 

computed to be approximately 24 and 19 respectively for the 2 scenarios. It is note worthy 

that both the system sizes are in excess of the threshold and therefore the customers beyond 
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the threshold experience balking as well as reneging. The average system size in second 

scenario is the lower because of the higher balking probability (0.4) and higher reneging 

rate (1/hr). 

3. Effective arrival rate slightly goes down as the balking probability goes up. 

4. Actual server load decreases as more customers leave the system because of higher 

impatience (balking and reneging). 

5. Average reneging rate has decreased in the second scenario even though a higher reneging 

rate has been assumed. This might appear contradictory however, we recall that reneging 

is observed only among those customers who join the system beyond the threshold. We 

note that the balking prob. in the second scenario is twice the balking probability of the 

first scenario. Consequently, more customers balk in the second scenario compared to the 

first. This in turn means that reneging is observed on fewer customers and therefore it is 

not unexpected that the average reneging rate has decreased. The same logic applies to 

reduction of proportion of customers lost due to reneging. 

6. The proportion of customers lost due to balking and finite buffer restriction has increased 

in the second scenario even though the size of the buffer is the same(N=26). This increase 

is due to increase in the balking probability. The balking probability in the second scenario 

is twice that of the first and consequently the proportion of customers lost due to balking 

and finite buffer restriction is increases from 32% to 63% in the second scenario. 

7. Proportion of total customer lost is higher in the second scenario. This is because more 

customers leave the system due to higher reneging rate and balking probability. 

8. From the perspective of a customer, given that he has not been turned away due to finite 

buffer restriction the probability of joining the system inside the threshold is of particular 

interest. We note that in both our scenarios the buffer size has been kept constant at twenty-

six so as to aid comparison. We also note that the average system size in the first scenario 

is around 24 and in the second scenario around 19. In other words, there are around nine 

customers beyond the threshold in the first scenario and around four customers only in the 

second. Consequently, it is expected that an arriving customer will have a higher 

probability of joining inside the threshold in the second scenario. Our numerical results 

confirm the same. The only issue that could arise is with regard to low probability of joining 

inside the threshold (0.002 in the first scenario and 0.004 in the second scenario). This is 

because of the fact that there would be around nine customers on the average in the system 

beyond the threshold in the first scenario and around four customers in the second 

scenario. The probability of joining has gone up in the second scenario because the average 

number of customers beyond the threshold is lower compared to the first. 

Answer to the specific questions posed by the hospital planners are as follows (Considering 

the first scenario). 

1. The probability that an arriving patient will not wait = p0 = 7.1 ∗ 10−11 

2. The probability that an arriving patient will find a seat in the room =  

3. The expected total time a patient spends in the clinic =𝑊 =
𝐿

𝜆
= 1.18ℎ𝑟 
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6 SENSITIVITY ANALYSIS 

To study the variations in the different performance measures with variations in the system 

parameters, a sensitivity analysis is carried out in this section. 

I. Let λ1 > λ0, then 

 
𝑝𝑜(𝜆1, 𝜇, 𝛼)

𝑝𝑜(𝜆0, 𝜇, 𝛼)
< 1 

 

                      ⇒ 
[1+  ∑

   

{
𝜆1(1+𝜂)

𝜇
}

𝑛
+ ∑ (

1+𝜂

𝜇𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆1𝜉)𝑛

∏ (𝜇+𝑖𝛼)𝑛−𝑘
𝑖=1

]

−1

[1+  ∑

   

{
𝜆0(1+𝜂)

𝜇
}

𝑛
+ ∑ (

1+𝜂

𝜇𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆0𝜉)𝑛

∏ (𝜇+𝑖𝛼)𝑛−𝑘
𝑖=1

]

−1   < 1 

       ⇒ 1 + ∑

   

{
𝜆0(1+𝜂)

𝜇
}

𝑛
+ ∑ (

1+𝜂

𝜇𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆0𝜉)𝑛

∏ (𝜇+𝑖𝛼)𝑛−𝑘
𝑖=1

   <  1 +

                                                                                      ∑

   

{
𝜆1(1+𝜂)

𝜇
}

𝑛
+  ∑ (

1+𝜂

𝜇𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆1𝜉)𝑛

∏ (𝜇+𝑖𝛼)𝑛−𝑘
𝑖=1

  

⇒ (𝜆0 − 𝜆1) (
1 + 𝜂

𝜇
) + (𝜆0

2 − 𝜆1
2) (

1 + 𝜂

𝜇
)

2

+ ⋯ + (𝜆0
𝑘 − 𝜆1

𝑘) (
1 + 𝜂

𝜇
)

𝑘

+ (𝜆0
𝑘+1 − 𝜆1

𝑘+1) 

(
1 + 𝜂

𝜇𝜉
)

𝑘 𝜉𝑘+1

(𝜇 + 𝛼)
+ (𝜆0

𝑘+2 − 𝜆1
𝑘+2) (

1 + 𝜂

𝜇𝜉
)

𝑘 𝜉𝑘+2

(𝜇 + 𝛼)(𝜇 + 2𝛼)
+ ⋯ + (𝜆0

𝑁 − 𝜆1
𝑁) 

(
1 + 𝜂

𝜇𝜉
)

𝑘 𝜉𝑁

(𝜇 + 𝛼)(𝜇 + 2𝛼). . . (𝜇 + (𝑁 − 𝑘)𝛼)
 < 0 

which is true. Hence, p0 decreases as λ increases 

II. Let 𝜇1 > 𝜇0, then 

𝑝𝑜(𝜆, 𝜇1, 𝛼)

𝑝𝑜(𝜆, 𝜇0, 𝛼)
> 1 

 

                            ⇒ 
[1+  ∑

   

{
𝜆(1+𝜂)

𝜇1
}

𝑛
+ ∑ (

1+𝜂

𝜇1𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆𝜉)𝑛

∏ (𝜇1+𝑖𝛼)𝑛−𝑘
𝑖=1

]

−1

[1+  ∑

   

{
𝜆(1+𝜂)

𝜇0
}

𝑛
+ ∑ (

1+𝜂

𝜇0𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆𝜉)𝑛

∏ (𝜇0+𝑖𝛼)𝑛−𝑘
𝑖=1

]

−1   > 1 

       ⇒ 1 +   ∑

   

{
𝜆(1+𝜂)

𝜇0
}

𝑛
+  ∑ (

1+𝜂

𝜇0𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆𝜉)𝑛

∏ (𝜇0+𝑖𝛼)𝑛−𝑘
𝑖=1

> 1 +

                                                                       ∑

   

{
𝜆(1+𝜂)

𝜇1
}

𝑛
+ ∑ (

1+𝜂

𝜇1𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆𝜉)𝑛

∏ (𝜇1+𝑖𝛼)𝑛−𝑘
𝑖=1
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which is true. Hence, p0 increases as µ increases. 

III. Let α1 > α0, then  

𝑝𝑜(𝜆, 𝜇, 𝛼1)

𝑝𝑜(𝜆, 𝜇, 𝛼0)
> 1 

 

                       ⇒ 
[1+  ∑

   

{
𝜆(1+𝜂)

𝜇
}

𝑛
+ ∑ (

1+𝜂

𝜇𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆𝜉)𝑛

∏ (𝜇+𝑖𝛼1)𝑛−𝑘
𝑖=1

]

−1

[1+  ∑

   

{
𝜆(1+𝜂)

𝜇
}

𝑛
+ ∑ (

1+𝜂

𝜇𝜉
)

𝑘
𝑁
𝑛=𝑘+1

𝑘
𝑛=1  

(𝜆𝜉)𝑛

∏ (𝜇+𝑖𝛼0)𝑛−𝑘
𝑖=1

]

−1   > 1 

 

which is true. Hence, p0 increases as α increases. 

Table 3: Variations in performance measures w.r.t. mean arrival rate λ considering µ = 8/hr,α 

= 0.5/hr,k = 15,η = 0.3,ξ = 0.8,N = 26 

λ p0 L λe λs αA Pα PB+F PI γ 

20 7.1 × 10−11 23.5194 12.2608 11.7543 4.2608 0.3475 0.3257 0.6733 0.002 

21 2.2 × 10−11 23.7767 12.3889 12.4206 4.3889 0.3543 0.3386 0.6929 0.001 

22 7.3 × 10−12 23.9926 12.4967 13.1096 4.4966 0.3598 0.3518 0.7117 0.0008 

23 2.5 × 10−12 24.1752 12.5878 13.8163 4.5878 0.3645 0.3653 0.7298 0.0005 

24 9.0 × 10−13 24.3307 12.6655 14.5372 4.6655 0.3684 0.3789 0.7472 0.0003 

25 3.3 × 10−13 24.4642 12.7322 15.2696 4.7322 0.3717 0.3926 0.7643 0.0002 

 

It can be seen from Table 3 that as the arrival rate λ increases, the effective arrival rate, system 

size and the proportion of total customers lost all rise. In contrast, the probability of the server 

remaining idle decreases. This is expected, as a higher number of arriving customers naturally 

reduces the likelihood of idle time for the server. The increase in other performance metrics is 

due to the fact that a higher customer arrival rate leads to a longer queue, which, in turn, 

increases the system size. As a result, customers experience longer waiting times, leading to a 

higher average reneging rate and a greater proportion of customers lost due to impatience. 

Table 4: Variations in performance measures w.r.t. mean service rate µ considering λ = 

20/hr,α = 0.5/hr,k = 15,η = 0.3,ξ = 0.8,N = 26 

µ p0 L λe λs αA Pα PB+F PI γ 

8 7.1 × 10−11 23.5194 12.2608 11.7543 4.2608 0.3475 0.3257 0.6733 0.002 

9 8.9 × 10−10 22.9966 13.0013 12.0372 4.0013 0.3078 0.3065 0.6142 0.0047 

10 8.3 × 10−9 22.3846 13.6994 12.3881 3.6994 0.27 0.2894 0.5595 0.0102 

11 6.1 × 10−8 21.6874 14.3592 12.8196 3.3592 0.2339 0.2736 0.5075 0.0202 

12 3.5 × 10−7 20.9202 14.9909 13.3412 2.9909 0.1995 0.2579 0.4575 0.0362 

13 1.7 × 10−6 20.1067 15.6099 13.956 2.6099 0.1672 0.2417 0.4089 0.0602 
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As shown in Table 4, an increase in the service rate µ leads to a reduction in the system size. 

Consequently, both the average reneging rate and the proportion of total customers lost also 

decrease. With a higher service rate, customers experience shorter wait times, making it less 

likely for them to renege, which results in fewer customers leaving the queue due to 

impatience. Additionally, an increase in the service rate raises the probability of the system 

being idle, which is clearly observed. The effective arrival rate increases as the service rate 

rises, because a higher service rate reduces wait times, allowing the system to handle more 

customers in a given period. This results in a higher rate of arrivals being processed, 

effectively increasing the arrival rate. 

Table 5: Variations in performance measures w.r.t. reneging rate α considering λ = 20/hr, µ 

= 8/hr,k = 15,η = 0.3,ξ = 0.8,N = 26 

α p0 L λe λs αA Pα PB+F PI γ 

0.5 7.1 × 10−11 23.5194 12.2608 11.7543 4.2608 0.3475 0.3257 0.6733 0.002 

0.6 1.02 × 10−10 23.1553 12.8951 11.1266 4.8951 0.3796 0.3095 0.6891 0.003 

0.7 1.4 × 10−10 22.7819 13.4503 10.5798 5.4503 0.4052 0.2964 0.7017 0.004 

0.8 1.9 × 10−10 22.4059 13.9294 10.1109 5.9294 0.4257 0.286 0.7116 0.005 

0.9 2.5 × 10−10 22.034 14.3374 9.7149 6.3374 0.442 0.2775 0.7195 0.006 

1 3.1 × 10−10 21.6716 14.6811 9.3848 6.6811 0.4551 0.2707 0.7257 0.007 

 

As observed in Table 5, when the reneging rate α increases, the proportion of total customers 

lost also rises. This is because a higher reneging rate results in more customers abandoning 

the queue before receiving service. Consequently, the system size decreases as fewer 

customers remain in the queue. As a result, when an arriving customer observes a shorter 

queue, they are more likely to join the system, increasing the effective arrival rate. 

7 CONCLUSION 

This study examines a multi-server queuing model featuring encouraged arrivals, 

threshold limits, balking and position-dependent reneging. The analysis focuses on steady-

state conditions and provides explicit formulas for both traditional and innovative 

performance metrics. A numerical example demonstrates the model’s practical relevance and 

application in real-world scenarios. Sensitivity analysis evaluates how parameter changes 

influence performance measures, offering insights into system behaviour. The findings 

highlight opportunities for extending the model by incorporating encouraged arrivals and 

threshold limits. Future research could address non-Markovian settings, transient state 

conditions, alternative arrival patterns such as batch arrivals and customer behaviour under 

varied service disciplines. 
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Appendix 

Derivation of P ′ (1):  

From equation (3.2), we have 

we have λ(1 + η)pn−1 + µpn+1 = [µ + λ(1 + η)]pn; for n = 1,2,...,k – 1 

Multiplying both sides of the equation by Sn and summing over n, 

 

 

From equation (3.3), we have 

λ(1 + η)pk−1 + (µ + α)pk+1 = (µ + λξ)pk; for n = k 

Multiplying both sides of the equation by Sk, 

  (8.2) 
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From equation (3.4), we have 

λξpn−1+{µ + (n − k + 1)α}pn+1 = [{µ + (n − k)α} + λξ]pn; for n = k+1,k+2,...,N−1 

Multiplying both sides of the equation by Sn and summing over n, 

 

 (8.3) 

From equation (3.5), we have 

λξpn−1 = {µ + (n − k)α}pn; for n = N 

Multiplying both sides of the equation by Sn and summing over n, 

λξSpN−1SN−1 = {µ + (N − k)α}pNSN                (8.4) 

Adding (8.1), (8.2), (8.3) and (8.4), 
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Taking limit as S→1, we get 

 

 


