# **Vol. 12. Issue.4. 2024 (Oct-Dec)** ©KY PUBLICATIONS



http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

# BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal



# Solving Triopoly Game with Triangular Intuitionistic Fuzzy Numbers as Payoff and its Application in Market Share

# S.A.Sahathana Thasneem<sup>\*1</sup>, Dr.A.Radharamani<sup>2</sup>

<sup>1</sup>Department of Mathematics, Chikkanna Government Arts College-641602, Tirupur(TN),India

\*Email: sahathana.latheef@gmail.com

<sup>2</sup>Department of Mathematics, Chikkanna Government Arts College-641602, Tirupur(TN),India

Email:radhabtk@gmail.com

DOI:10.33329/bomsr.12.4.9



## ABSTRACT

This paper proposes a technique for solving a triopoly game with Triangular Intuitionistic Fuzzy Numbers as payoffs. The players in the game interact strategically without cooperating with one another. The suggested method is applied in a numerical example of internet service providers, which is helpful for the suppliers to make decisions on their costs effectively.

**Keywords:** Triopoly game, Non- cooperative games, Intuitionistic Fuzzy set, Triangular Intuitionistic Fuzzy Number,  $(\alpha, \beta)$  – cut values, Nash Equilibrium.

# 1.Introduction

Game theory is a prominent approach for evaluating the strategic interactions between the decision makers. In the decision making process there is always a competition among the players and it deals with the conditions like the number of strategies, their level of importance, collecting information about their problem and the opponents. In classical game theory the relation between two players is widely discussed[3]. When the game pattern involves three firms selling a same product competing over the market share the triopoly structure become apparent[14]. In this situation the decision maker not only affected by their decisions, but the choices of their competitors as well. The triopoly game is the oligopoly game with three suppliers on a market. The triopoly game structure is commonly used to evaluate the pricing of the products.

L.A.Zadeh introduced the theory of fuzzy sets 1965 to deal with the uncertainty caused by dealing the real life circumstances with classical set theory in decision making[7]. The fuzzy set uses a membership function to denote the degree of belongingness or acceptance[2]. In the process of decision making it is insufficient where in reality the level of belongingness and non-belongingness both are involved. Then the concept of Intuitionistic Fuzzy Sets evolved which has a membership as well as a non-membership function[6]. Intuitionistic Fuzzy sets are the extension of Fuzzy sets with two indices(membership and non membership functions) instead of one index and delas with the acceptance and hesitance levels.

The decision criteria of 3D- Matrix games under uncertainty are derived by Ozkaya.M[10] in which the laplace, wald, Hurwicz and savage criteria are demonstrated for three player games. The triopoly structure for non-cooperative games is discussed in[11] and the strategic interaction of the game is represented by a model to solve a three suppliers game. The behaviour of heterogeneous players in the discrete triopoly form is given in[1], the players in the game are considered aa rational. Matrix games with Trapezoidal Intuitionistic Fuzzy(TrIF) payoff are solved[12] by converting the TrIF payoff values into crisp matrix. The famous methods of dominance, graphical and algebraic are used to solve the payoff matrix. The triopoly structure considered in this paper makes it impossible to solve the payoff matrix by classical method which are useful only in the two dimensional form. Bi-Matrix game with Triangular Intuitionistic Fuzzy(TIF) payoff values are solved by using the  $\alpha,\beta$  –cut values of the Intuitionistic fuzzy sets and their mean values[9]. A non-linear Intuitionistic fuzzy approach is applied to find the equilibrium in  $m \times n$  games[4]. Various methods to find the Nash Equilibrium in  $m \times n$  is discussed in [13]. In this paper the Gambit software tool[8] is used to find the equilibrium solution of the triopoly game. The stability and allocation of three player game introduced to deal with the cooperative players[14]. In this paper a technique is introduced which can be used in the triopoly structure of the game matrix with payoffs in the form of Triangular Intuitionistic Fuzzy Numbers. In the strategic situation considered here, the payoff matrix is calculated by conducting a survey for the population. The survey can be affected by the acceptance or the hesitance of the people participating regarding the selection of particular supplier. So the Intuitionistic Fuzzy set structure is considered to represent the membership and non-membership levels of the payoff in each outcome. A ranking function is used to defuzzify the Triangular Intuitionistic numbers into crisp numbers. This method is a first attempt on approaching the triopoly game structure with Intuitionistic Fuzzy sets to make the decision making process more realistic.

This paper is organized as follows, In section 2 the definitions and arithmetic operations of TIFNs are given, section 3 contains the model for solving the triopoly game with TIFN payoffs and the numerical example of applying the proposed method in the game of Internet service providers is explained in section 4, section 5 concludes the paper.

# 2. Preliminaries

#### **Definition 2.1:**

A Triangular Intuitionistic Fuzzy Number (TIFN) is defined as  $\tilde{l} = \langle (\underline{l}, l_1, \overline{l}); w_{\tilde{l}}, u_{\tilde{l}} \rangle$  in  $\mathbb{R}$  with membership function  $\mu_{\tilde{l}}(x)$  and non-membership function  $v_{\tilde{l}}(x)$  which are defined as

$$\mu_{\bar{l}}(x) = \begin{cases} \frac{x-\underline{l}}{l_1-\underline{l}} w_{\bar{l}} , & \underline{l} \le x < l_1 \\ w_{\bar{l}} , & x = l_1 \\ \frac{\overline{l}-x}{\overline{l}-l_1} w_{\bar{l}} , & l_1 < x \le \overline{l} \\ 0, & x < l \text{ or } x > \overline{l} \end{cases}$$

and

$$v_{\bar{l}}(x) = \begin{cases} \frac{(\underline{l}-x) + u_{\bar{l}}(x-\underline{l})}{(l_1-\underline{l})} , & \underline{l} \le x < l_1 \\ u_{\bar{l}}, & x = l_1 \\ \frac{(x-l_1) + u_{\bar{l}}(\overline{l}-x)}{(\overline{l}-l_1)}, & l_1 < x \le \overline{l} \\ 1, & x < \underline{l} \text{ or } x > \overline{l} \end{cases}$$

The values  $w_{\tilde{l}}, u_{\tilde{l}}$  represents the maximum degree of membership and minimum degree of non-membership, respectively. And they satisfy the condition  $0 \le w_{\tilde{l}} \le 1$ ,  $0 \le u_{\tilde{l}} \le 1$  and  $0 \le w_{\tilde{l}} + u_{\tilde{l}} \le 1$ .

#### **Definition 2.2:**

For a TIFN  $\tilde{l} = \langle \underline{l}, l_1, \overline{l}; w_{\overline{l}}, u_{\overline{l}} \rangle$  the  $(\alpha, \beta)$ - cut set is a subset of R that is  $\tilde{l}_{\alpha,\beta} = \{x: \mu_{\overline{l}}(x) \ge \alpha, v_{\overline{l}}(x) \le \beta\}$ , where  $0 \le \alpha \le w_{\overline{l}}, u_{\overline{l}} \le \beta \le 1$  and  $0 \le \alpha + \beta \le 1$ . and  $\tilde{l}_{\alpha}$  is defined by the closed interval  $[L_{\overline{l}}(\alpha), R_{\overline{l}}(\alpha)]$ ,

$$L_{\tilde{l}}(\alpha) = \frac{(w_{\tilde{l}} - \alpha)\underline{l} + \alpha l_1}{w_{\tilde{l}}}, \qquad R_{\tilde{l}}(\alpha) = \frac{(w_{\tilde{l}} - \alpha)\overline{l} + \alpha l_1}{w_{\tilde{l}}}$$

Then,

$$\tilde{l}_{\alpha} = \begin{bmatrix} (w_{\tilde{l}} - \alpha)\underline{l} + \alpha l_{1} \\ w_{\tilde{l}} \end{bmatrix}, \qquad \frac{(w_{\tilde{l}} - \alpha)\overline{l} + \alpha l_{1}}{w_{\tilde{l}}} \end{bmatrix}$$

Similarly the  $\beta$  –cut is defined as

$$\tilde{l}_{\beta} = \left[\frac{(1-\beta)l_{1} + (\beta - u_{\tilde{l}})l_{1}}{1 - u_{\tilde{l}}}, \frac{(1-\beta)l_{1} + (\beta - u_{\tilde{l}})l_{1}}{1 - u_{\tilde{l}}}\right]$$

# 2.1 Arithmetic operations on TIFN:

For two TIFNs  $\tilde{l} = \langle (\underline{l}, l_1, \overline{l}); w_{\tilde{l}}, u_{\tilde{l}} \rangle$  and  $\tilde{f} = \langle (\underline{f}, f_1, \overline{f}); w_{\tilde{f}}, u_{\tilde{f}} \rangle$  the arithmetic operations are of the form,

$$\tilde{l} + \tilde{f} = \langle \left(\underline{l} + \underline{f}, l_1 + f_1, \overline{l} + \overline{f}, \right); w_{\tilde{l}} \land w_{\tilde{f}}, u_{\tilde{l}} \lor u_{\tilde{f}} \rangle$$

$$\begin{split} \tilde{l} - \tilde{f} &= \langle \left(\underline{l} - \overline{f}, l_1 - f_1, \overline{l} - \underline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \\ \tilde{l} \times \tilde{f} &= \begin{cases} \langle \left(\underline{l}\underline{f}, l_1 f_1, \overline{l}\overline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \text{ if } \tilde{l} > 0 \text{ and } \tilde{f} > 0 \\ \langle \left(\underline{l}\overline{f}, l_1 f_1, \overline{l}\underline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \text{ if } \tilde{l} < 0 \text{ and } \tilde{f} > 0 \\ \langle \left(\overline{l}\overline{f}, l_1 f_1, \underline{l}\underline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \text{ if } \tilde{l} < 0 \text{ and } \tilde{f} < 0 \end{cases} \\ \frac{\tilde{l}}{\tilde{f}} &= \begin{cases} \langle \left(\underline{l}/\overline{f}, l_1 / f_1, \overline{l}/\underline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \text{ if } \tilde{l} < 0 \text{ and } \tilde{f} > 0 \\ \langle \left(\overline{l}/\overline{f}, l_1 / f_1, \underline{l}/\underline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \text{ if } \tilde{l} < 0 \text{ and } \tilde{f} > 0 \\ \langle \left(\overline{l}/\overline{f}, l_1 / f_1, \underline{l}/\overline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \text{ if } \tilde{l} < 0 \text{ and } \tilde{f} > 0 \\ \langle \left(\overline{l}/\overline{f}, l_1 / f_1, \underline{l}/\overline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \text{ if } \tilde{l} < 0 \text{ and } \tilde{f} > 0 \\ \langle \left(\overline{l}/\overline{f}, l_1 / f_1, \underline{l}/\overline{f}\right); w_{\tilde{l}} \wedge w_{\tilde{f}}, u_{\tilde{l}} \vee u_{\tilde{f}} \rangle \text{ if } \tilde{l} < 0 \text{ and } \tilde{f} > 0 \end{cases} \end{cases}$$

For any real number  $\lambda$ ,

$$\lambda \tilde{l} = \begin{cases} \langle (\lambda \underline{l}, \lambda l_1, \lambda \overline{l}); w_{\bar{l}}, u_{\bar{l}} \rangle, if \lambda > 0 \\ \langle (\lambda \overline{l}, \lambda l_1, \lambda \underline{l}); w_{\bar{l}}, u_{\bar{l}} \rangle, if \lambda < 0 \end{cases}$$

# 2.2 Value and Ambiguity of TIFN:

For the TIFN  $\tilde{l} = \langle (\underline{l}, l_1, \overline{l}); w_{\tilde{l}}, u_{\tilde{l}} \rangle$  the value of membership and non-membership functions is denoted as  $S_{\mu}(\tilde{l})$  and  $S_{\nu}(\tilde{l})$ ,  $f(\alpha) = \frac{\alpha}{2w_{\tilde{l}}}$  and  $g(\beta) = \frac{1-\beta}{2(1-u_{\tilde{l}})}$  then

$$\begin{split} S_{\mu}(\tilde{l}) &= \int_{0}^{w_{\tilde{l}}} \left[ \frac{(w_{\tilde{l}} - \alpha)\underline{l} + \alpha l_{1} + (w_{\tilde{l}} - \alpha)\overline{l} + \alpha l_{1}}{w_{\tilde{l}}} \right] \frac{\alpha}{2w_{\tilde{l}}} d\alpha \\ &= \frac{w_{\tilde{l}}(\underline{l} + \overline{l} + 4l_{1})}{12} \\ S_{\nu}(\tilde{l}) &= \int_{u_{\tilde{l}}}^{1} \left[ \frac{(1 - \beta)l_{1} + (\beta - u_{\tilde{l}})\underline{l} + (1 - \beta)l_{1} + (\beta - u_{\tilde{l}})\overline{l}}{1 - u_{\tilde{l}}} \right] \frac{1 - \beta}{2(1 - u_{\tilde{l}})} d\beta \\ &= \int_{u_{\tilde{l}}}^{1} \left[ \left(\underline{l} + \overline{l}\right) + \frac{(2l_{1} - \underline{l} - \overline{l})(1 - \beta)}{1 - u_{\tilde{l}}} \right] \frac{1 - \beta}{2(1 - u_{\tilde{l}})} d\beta \\ &= \frac{(\underline{l} + 4l_{1} + \overline{l})(1 - u_{\tilde{l}})}{12} \end{split}$$

The ambiguity of the TIFN  $\tilde{l} = \langle (\underline{l}, l_1, \overline{l}); w_{\tilde{l}}, u_{\tilde{l}} \rangle$  are denoted as  $T_{\mu}(\tilde{l})$  and  $T_{\nu}(\tilde{l})$ , defined as

$$\begin{split} T_{\mu}(\tilde{l}) &= \int_{0}^{w_{\tilde{l}}} \left[ \frac{(w_{\tilde{l}} - \alpha)\overline{l} + \alpha l_{1} - (w_{\tilde{l}} - \alpha)\underline{l} + \alpha l_{1}}{w_{\tilde{l}}} \right] \frac{\alpha}{2w_{\tilde{l}}} \ d\alpha \\ &= \int_{0}^{w_{\tilde{l}}} \left[ (\overline{l} - \underline{l}) - \frac{(\overline{l} - \underline{l})\alpha}{w_{\tilde{l}}} \right] \frac{\alpha}{2w_{\tilde{l}}} \ d\alpha \\ &= \frac{(\overline{l} - \underline{l})w_{\tilde{l}}}{12} \\ T_{\nu}(\tilde{l}) &= \int_{u_{\tilde{l}}}^{1} \left[ \frac{(1 - \beta)l_{1} + (\beta - u_{\tilde{l}})\overline{l} - (1 - \beta)l_{1} + (\beta - u_{\tilde{l}})\underline{l}}{1 - u_{\tilde{l}}} \right] \frac{1 - \beta}{2(1 - u_{\tilde{l}})} d\beta \end{split}$$

#### S.A.Sahathana Thasneem & Dr.A.Radharamani

$$= \int_{u_{\tilde{l}}}^{1} \left[ \left(\bar{l} - \underline{l}\right) - \frac{\left(\bar{l} - \underline{l}\right)(1 - \beta)}{1 - u_{\tilde{l}}} \right] \frac{1 - \beta}{2(1 - u_{\tilde{l}})} d\beta$$
$$= \frac{\left(\bar{l} - \underline{l}\right)(1 - u_{\tilde{l}})}{12}$$

#### **Definition 2.3:**

For the TIFN  $\tilde{l} = \langle (\underline{l}, l_1, \overline{l}); w_{\overline{l}}, u_{\overline{l}} \rangle$  and the ranking function or defuzzify function is defined as  $\mathcal{R} : \mathcal{F}(R) \to R$  where  $\mathcal{F}(R)$  is the collection of all Triangular Intuitionistic fuzzy numbers defined on R, and the function maps each TIFN into the real line. And the ranking method also used to evaluate the relation between values and ambiguities of membership and non-membership functions of Triangular Intuitionistic fuzzy numbers defined as,

$$\mathcal{R}(\tilde{l}) = \frac{\mathbb{P}(\tilde{l}) + \mathbb{Q}(\tilde{l})}{2}$$

Where,

$$\mathbb{P}(\tilde{l}) = C_{\mu}(\tilde{l}) + C_{\nu}(\tilde{l}) = \frac{(\underline{l} + 4l_1 + \overline{l})(w_{\bar{l}} + 1 - u_{\bar{l}})}{12},$$
$$\mathbb{Q}(\tilde{l}) = D_{\mu}(\tilde{l}) + D_{\nu}(\tilde{l}) = \frac{(\overline{l} - \underline{l})(w_{\bar{l}} + 1 - u_{\bar{l}})}{12}$$

#### 2.3 Equilibrium in Triopoly game :

The general structure of a triopoly game is defined by the coalition of set of players

 $N = \{1,2,3\}$ , strategies or actions  $s_i$ , i = 1,2,3, , and the payoff function  $p_i \in R$ , i = 1,2,3, strategy space for each player  $i, S_i$ , i = 1,2,3, and strategy combinations between strategies  $(s_1, s_2, s_3)$ . According to Nash a finite non- cooperative game has at least one equilibrium. In a n-person game each player choose from their finite strategy set from the strategy space[]. Each strategy in the player's strategy space counters with each strategies from other player's strategy space in the aim of attaining the highest payoff.

In the non- cooperative game  $s_j$  are the strategy set of other players, and each player i have the knowledge about  $s_j$ ,  $j \in N$  and  $p_j(s)$  is the payoff function in the strategy set  $s_j$ . So in the game each player i choose his best action according to j and  $p_i(s/t_i)$  is the best outcome of the player i with respect to s, and  $t_i(s)$  is the collection of best possible outcomes of  $i \in N$ . Because there may be more than one maximum payoff for  $s_i$ . So a strategy  $\overline{s}$  is said to be a best response if  $\overline{s} \in t_i(\overline{s})$  that is  $\overline{s}$  is the equilibrium if  $\overline{s} \in s_i$  and  $p_i(\overline{s}) = \max p_i(\overline{s}; s_i)$ ,  $i \in N$ .

#### 3. Model for solving triopoly game with TIFN payoffs

In the non-cooperative triopoly game it is assumed that the players are well aware of their own strategies as well as the other's and the players are considered rational. In this method a survey is conducted on the users to find the payoff matrix of each player. There are three suppliers involved in the market share of same product. Here  $\tilde{L}$ ,  $\tilde{F}$  and  $\tilde{H}$  are the three competitors in the market. The following notations are used in the construction of the model

 $\tilde{l}_{ijk}$ , (*i*, *j*, *k* = 1,2,3) is the estimated payoff of player  $\tilde{L}$  if  $\tilde{L}$  chooses *i*,  $\tilde{F}$  chooses *j* and  $\tilde{H}$  chooses *k*. Where *i*, *j*, *k* are the strategies available to each player,

 $\tilde{f}_{ijk}$ , (*i*, *j*, *k* = 1,2,3) is the estimated payoff of  $\tilde{F}$  with the strategy combinations of  $\tilde{L}$  and  $\tilde{H}$  with  $\tilde{F}$ ,

 $\tilde{h}_{ijk}$ , (*i*, *j*, *k* = 1,2,3) is the estimated payoff of  $\tilde{H}$  with the strategy combinations of  $\tilde{L}$  and  $\tilde{F}$  with  $\tilde{H}$ ,

 $\tilde{L}_o, \tilde{F}_o$  and  $\tilde{H}_o$  are the number of users currently using the service before beginning the survey,

 $\tilde{l}_o, \tilde{f}_o$  and  $\tilde{h}_o$  are the number of users surveyed for each suppliers  $\tilde{L}, \tilde{F}$  and  $\tilde{H}$ ,

 $\tilde{L}\tilde{L}_{ijk}$ , (i, j, k = 1, 2, 3) is the number of users of  $\tilde{L}$  chooses to remain as the customers of  $\tilde{L}$  after the survey,

 $\tilde{F}\tilde{F}_{ijk}, \tilde{H}\tilde{H}_{ijk}$ , (i, j, k = 1, 2, 3) are the number of users of  $\tilde{F}$  and  $\tilde{H}$  chooses to retain their choice as being the customers of  $\tilde{F}$  and  $\tilde{H}$  after the survey,

 $\tilde{L}\tilde{F}_{ijk}$ , (i, j, k = 1, 2, 3) is the surveyed users of  $\tilde{L}$  chooses to become the customers of  $\tilde{F}$  after the survey,

Similarly,  $\tilde{L}\tilde{H}_{ijk}$ ,  $\tilde{F}\tilde{L}_{ijk}$ ,  $\tilde{F}\tilde{H}_{ijk}$ ,  $\tilde{H}\tilde{L}_{ijk}$ , and  $\tilde{H}\tilde{F}_{ijk}$  are the number of the users changing their choices to other service providers after the survey,

 $\underline{\tilde{L}}_{ijk}$ ,  $\underline{\tilde{F}}_{ijk}$  and  $\underline{\tilde{H}}_{ijk}$  are the numbers of surveyed users chooses to discontinue the service regarding the companies choices.

The users might have a hesitation concerning the choice of using a particular service provider and they could change their decision due to lack of information or having second thoughts. Using the Intuitionistic Fuzzy Set theory is a better way to deal with the situation. Here  $w_{\tilde{l}}$ ,  $u_{\tilde{l}}$ ,  $w_{\tilde{f}}$ ,  $u_{\tilde{f}}$ ,  $w_{\tilde{h}}$  and  $u_{\tilde{h}}$  are the degree of acceptance and hesitation for each player for the strategy combination of *i*, *j* and *k*. The estimated payoff is calculated by using the following equations,

$$\tilde{l}_{ijk} = \langle \left(\frac{\tilde{L}\tilde{L}_{ijk}}{\tilde{l}_o}, \tilde{L}_o + \frac{\tilde{F}\tilde{L}_{ijk}}{\tilde{f}_o}, \tilde{F}_o + \frac{\tilde{H}\tilde{L}_{ijk}}{\tilde{h}_o}, \tilde{H}_o - \frac{\tilde{L}_{ijk}}{\tilde{l}_o}, \tilde{L}_o\right); w_{\tilde{l}}, u_{\tilde{l}}\rangle$$
(1)

$$\tilde{f}_{ijk} = \langle \left(\frac{\tilde{L}\tilde{F}_{ijk}}{\tilde{l}_o}, \tilde{L}_o + \frac{\tilde{F}\tilde{F}_{ijk}}{\tilde{f}_o}, \tilde{F}_o + \frac{\tilde{H}\tilde{F}_{ijk}}{\tilde{h}_o}, \tilde{H}_o - \frac{\tilde{F}_{ijk}}{\tilde{f}_o}, \tilde{F}_o\right); w_{\tilde{f}}, u_{\tilde{f}}\rangle$$
(2)

$$\tilde{h}_{ijk} = \left\langle \left( \frac{\tilde{L}\tilde{H}_{ijk}}{\tilde{l}_o} . \tilde{L}_o + \frac{\tilde{F}\tilde{H}_{ijk}}{\tilde{f}_o} . \tilde{F}_o + \frac{\tilde{H}\tilde{H}_{ijk}}{\tilde{h}_o} . \tilde{H}_o - \frac{\tilde{H}_{ijk}}{\tilde{h}_o} . \tilde{H}_o \right); w_{\tilde{h}}, u_{\tilde{h}} \right\rangle$$
(3)

## 4.Numerical Example

The model explained above is applied on the market share of internet service providers[11] where three companies  $\tilde{L}$ ,  $\tilde{F}$  and  $\tilde{H}$  are supplying internet service for the customers. Among the three  $\tilde{L}$  is the oldest one in the market, so the customers using their service are higher than the others.

The companies approaches a situation about price change. Three competitors are trying to attract the customers as maximum as possible with an aim of increasing the profit. Here each companies have strategies which are same for all the three regarding the price change.

The companies are the players in the triopoly structure, each of them working independently and have the knowledge about other players strategies which are i.Retaining the current price (CP)

ii.Decreasing the price (LP)

iii.Increasing the price (HP)

In the market the number of customers using  $\tilde{L}$  are 1000, customers using  $\tilde{F}$  are 600 and using  $\tilde{H}$  are 400.

The survey is conducted through phone calling and Email in which the companies inform about their options in price change to the customers and the customers decides according to that. Here the customers also have three choices, they may continue their existing service providers ,or changing to other service providers, or discontinue the service.

The number strategy combinations for each player for i, j, k = 1,2,3 is  $n(S_i) = 3^3 = 27$ . The results of the survey with respect to the company's choices are given in the tables 1,2 and 3.

| (1). T                 | he cust | comers asked what wo                       | ould they do if $\tilde{L}$ ch                    | nooses to retain curre                      | ent price                                   |
|------------------------|---------|--------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------------|
| other<br>playe<br>choi | er's    | Response from custo                        | omers                                             |                                             |                                             |
| choi                   | ce      |                                            |                                                   |                                             |                                             |
| Ĩ                      | Ĥ       | Remains at <i>L</i>                        | Changes to <i>F</i>                               | Changes to $\tilde{H}$                      | Discontinue<br>service                      |
| CP                     | CP      | ⟨ <sup>(395,397,400);</sup> ⟩<br>0.61,0.3  | <pre>(<sup>(51,53,55);</sup>)<br/>0.5,0.32</pre>  | $\langle {}^{(36,38,40);}_{0.4,0.5}  angle$ | <pre>(6,7,9) (0.4,0.6)</pre>                |
| (1)                    | (1)     |                                            |                                                   |                                             |                                             |
|                        |         |                                            |                                                   |                                             |                                             |
| LP                     | СР      | <pre> (406,407,410);<br/>0.38,0.46</pre>   | $\langle {}^{(66,68,69);}_{0.42,0.51} \rangle$    | <pre>(11,13,16);<br/>0.29,0.41</pre>        | $\langle {(2,3,5);} \\ 0.31, 0.42 \rangle$  |
| (2)                    | (1)     | 0.50,0.40                                  | 0.42,0.31                                         | 0.29,0.41                                   | 0.31,0.42                                   |
| LP                     | LP      | <pre>(385,387,388);<br/>0.41,0.45</pre>    | <pre>(<sup>(55,56,58);</sup>)<br/>0.42,0.33</pre> | < <sup>(45,47,49);</sup><br>0.3,0.5         | $\langle {}^{(3,5,6);}_{0.61,0.32} \rangle$ |
| (2)                    | (2)     | 0.41,0.43                                  | 0.42,0.33                                         | 0.5,0.5                                     | 0.01,0.32                                   |
|                        |         |                                            |                                                   |                                             |                                             |
| HP                     | HP      | ⟨ <sup>(400,402,406)</sup> ;⟩<br>0.58,0.36 | <pre>(38,40,42);<br/>0.5,0.3</pre>                | <pre>(35,39,41);<br/>0.37,0.48</pre>        | $\langle (7,9,11); \\ 0.6,0.25 \rangle$     |
| (3)                    | (3)     | 0.38,0.30                                  | 0.3,0.5                                           | 0.37,0.40                                   | 0.0,0.23                                    |
| (2)Th                  | e custo | mers asked what wou                        | ald they do if $\tilde{L}$ cho                    | ooses to decrease the                       | price                                       |
| other<br>playe         |         | Response from custo                        | mers                                              |                                             |                                             |
| choic                  | ce      |                                            |                                                   |                                             |                                             |
| Ĩ                      | Ĥ       | Remains at $\tilde{L}$                     | Changes to $\tilde{F}$                            | Changes to $\tilde{H}$                      | Discontinue                                 |
|                        |         |                                            |                                                   |                                             | service                                     |
| СР                     | СР      | ⟨ <sup>(423,426,430);</sup> ⟩<br>0.52,0.33 | <pre>(33,35,38);<br/>0.61,0.28)</pre>             | <pre>(20,23,25); 0.42,0.35</pre>            | ( <sup>(4,6,7)</sup> ;)<br>0.38,0.5         |

| (1)   | (2)     |                                                        |                                                    |                                         |                                                                                                        |
|-------|---------|--------------------------------------------------------|----------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------|
| •••   |         |                                                        |                                                    |                                         |                                                                                                        |
| LP    | СР      | ⟨ <sup>(419,421,424)</sup><br>; 0.53,0.26              | ⟨ <sup>(42,45,47)</sup> ;⟩<br>0.49.0.32            | ⟨(18,20,23);<br>0.55.0.25               | ⟨ (3,5,6)<br>; 0.52,0.37⟩                                                                              |
| (2)   | (1)     | ; 0.53,0.26                                            | 0.49,0.32                                          | 0.55,0.25                               | ; 0.52,0.37                                                                                            |
| LP    | LP      | ( <sup>(415,417,419);</sup> )<br>0.42,0.38             | <pre>(49,51,53);<br/>0.62,0.28)</pre>              | ⟨ <sup>(20,22,25)</sup> ;⟩<br>0.32,0.45 | $\langle {}^{(0,1,3)}_{0.5,0.3} \rangle$                                                               |
| (2)   | (2)     | 0.42,0.30                                              | 0.02,0.20                                          | 0.32,0.43                               | 0.5,0.5                                                                                                |
|       |         |                                                        |                                                    |                                         |                                                                                                        |
| HP    | HP      | <pre>(417,420,422);<br/>0.5.0.3</pre>                  | $\langle (33,35,37); \\ 0.35,0.42 \rangle$         | ⟨(26,29,31);<br>0.38.0.42               | ⟨(5,6,8);<br>0.6,0.25⟩                                                                                 |
| (3)   | (3)     | 0.3,0.3                                                | 0.33,0.42                                          | 0.30,0.42                               | 0.0,0.23                                                                                               |
| (3)Th | e custo | omers asked what wor                                   | uld they do if $\tilde{L}$ ch                      | nooses to increase th                   | e price                                                                                                |
| other |         | Response from custo                                    | omers                                              |                                         |                                                                                                        |
| playe | er's    |                                                        |                                                    |                                         |                                                                                                        |
| c     | hoice   |                                                        |                                                    |                                         |                                                                                                        |
| Ĩ     | Ĥ       | Remains at $\tilde{L}$                                 | Changes to $\tilde{F}$                             | Changes to $\tilde{H}$                  | Discontinue<br>service                                                                                 |
| СР    | СР      | 〈 <sup>(338,340,344);</sup> 〉<br>0.51,0.35             | ⟨ <sup>(71,73,76)</sup> ;⟩<br>0.48,0.32            | ⟨ <sup>(67,70,72)</sup> ;⟩<br>0.6,0.22  | <pre>((5,7,8);<br/>0.4,0.48)</pre>                                                                     |
| (1)   | (1)     | 0.51,0.35                                              | 0.46,0.52                                          | 0.0,0.22                                | 0.4,0.48                                                                                               |
|       |         |                                                        |                                                    |                                         |                                                                                                        |
| LP    | CP      | 〈 <sup>(358,360,362);</sup> 〉<br>0.51,0.25             | ⟨ <sup>(78,80,81);</sup> ⟩<br>0.58,0.23            | <pre>(40,43,45);<br/>0.28,0.45</pre>    | ⟨(8,10,12);<br>0.52,0.31⟩                                                                              |
| (2)   | (1)     | 0.51,0.25                                              | 0.58,0.23                                          | 0.28,0.45                               | 0.52,0.31                                                                                              |
|       |         |                                                        |                                                    |                                         |                                                                                                        |
| HP    | LP      | 〈 <sup>(329,332,334)</sup> ; <sub>〉</sub><br>0.38,0.27 | <pre> (<sup>(74,77,79);</sup>)<br/>0.41,0.28</pre> | <pre>(73,75,78);<br/>0.25,0.61</pre>    | (5,7,9);                                                                                               |
| (3)   | (2)     | 0.38,0.27                                              | 0.41,0.28                                          | 0.25,0.61                               | 0.3,0.41                                                                                               |
| HP    | LID     | ⟨ <sup>300,304,308</sup> );<br>(0.43,0.35)⟩            | <pre>(74,77,80);<br/>0.51,0.25</pre>               | ⟨(69,72,74);<br>0.42,0.33⟩              | ⟨ <sup>(12,15,18)</sup> ;⟩<br>0.4,0.3                                                                  |
| 111   | HP      |                                                        |                                                    | $\left( \left( 1 \right) \right) $      | $\langle 0 \rangle 0 $ |

Table 1: survey results for  $\tilde{L}$ 

| (1)      | The cu          | stomers asked wha                                                    | t would they do if $\tilde{F}$                                                          | chooses to retain the                        | e current price                           |
|----------|-----------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|
| otł      | ner             | Response from cus                                                    | stomers                                                                                 |                                              | _                                         |
| play     | ver's           | -                                                                    |                                                                                         |                                              |                                           |
| chc      |                 |                                                                      |                                                                                         |                                              |                                           |
| Ĩ        | Ĥ               | Remains at $\tilde{F}$                                               | Changes to $\tilde{L}$                                                                  | Changes to $\tilde{H}$                       | Discontinue                               |
|          |                 |                                                                      | changes to 2                                                                            | entanges to m                                | service                                   |
| СР       | СР              | (260, 272, 274)                                                      | (35 37 11)                                                                              | (24,27,20).                                  |                                           |
|          |                 | <pre>(269,272,274);<br/>0.46,0.27)</pre>                             | $\langle {(35,37,41);} \\ 0.51,0.32 \rangle$                                            | <pre>(24,27,29);<br/>0.39,0.45)</pre>        | ⟨(3,5,6);⟩<br>0.6,0.2⟩                    |
| (1)      | (1)             | 0.10,0.27                                                            | 0.51,0.52                                                                               | 0.5 9,0.15                                   | 0.0,0.2                                   |
|          |                 |                                                                      |                                                                                         |                                              |                                           |
| LP       | LP              | 〈 <sup>(253,255,259);</sup><br>0.37,0.49〉                            | 〈 <sup>(43,45,49)</sup> ;<br>0.4,0.52〉                                                  | <pre>(32,35,37);<br/>0.41,0.35</pre>         | <pre>(1,3,5);<br/>0.6,0.21</pre>          |
| (2)      | (2)             |                                                                      |                                                                                         | ` 0.41,0.35 '                                | `0.6,0.21'                                |
| LP       | HP              | <pre>(261,264,267); 0.42,0.37</pre>                                  | $\langle {(50,53,56);} \\ 0.51,0.38 \rangle$                                            | <pre>(14,17,19);<br/>0.61,0.27)</pre>        | <pre>(4,6,8);<br/>0.41,0.34)</pre>        |
| (2)      | (3)             | 0.42,0.37                                                            | ` 0.51,0.38 ′                                                                           | ` 0.61,0.27 '                                | `0.41,0.34'                               |
|          |                 |                                                                      |                                                                                         |                                              |                                           |
| HP       | HP              | (269.273.275);                                                       | (34.36.40);                                                                             | (24.27.30);                                  | , (2.3.5); ,                              |
| (3)      | (3)             | <pre>(269,273,275);<br/>0.51,0.3</pre>                               | 〈 <sup>(34,36,40)</sup> ;<br>0.58,0.32〉                                                 | <pre>(24,27,30);<br/>0.5,0.28</pre>          | <pre>(2,3,5);<br/>0.41,0.32</pre>         |
| (9)      | · ·             | -                                                                    | l what would they do                                                                    | if F choose to deer                          | ase the price                             |
| - 1      |                 | 1                                                                    |                                                                                         |                                              | ease the price                            |
|          | her             | Response from cu                                                     | istomers                                                                                |                                              |                                           |
|          | yer's           |                                                                      |                                                                                         |                                              |                                           |
|          | oice            |                                                                      |                                                                                         | 1                                            |                                           |
| Ĩ        | $\widetilde{H}$ | Remains at $\tilde{F}$                                               | Changes to $\tilde{L}$                                                                  | Changes to $\tilde{H}$                       | Discontinue                               |
|          |                 |                                                                      |                                                                                         |                                              | service                                   |
| СР       | СР              | ( <sup>(371,319,321)</sup><br>روز (371,319,321)<br>روز (371,319,321) | ; $\langle (15,17,18); \\ 0.41,0.36 \rangle$                                            | ⟨ <sup>(5,7,8)</sup> ;<br>₀.5,₀.25⟩          | $\langle {}^{(0,2,3);}_{0.6,0.2} \rangle$ |
| (1)      | (1)             | 0.52,0.32                                                            | / 0.41,0.36 /                                                                           | <b>`</b> 0.5,0.25 <b>′</b>                   | <sup>\</sup> 0.6,0.2 <sup>/</sup>         |
|          |                 |                                                                      |                                                                                         |                                              |                                           |
| LP       | HP              | (324,327,330)                                                        | ;, , (7,9,11);                                                                          | (5,7,9);                                     | $\langle \rangle$                         |
| (2)      | (3)             | (324,327,330)<br>0.5,0.32                                            | ; $\langle (7,9,11); \\ 0.45,0.52 \rangle$                                              | <pre>((5,7,9);<br/>0.27,0.38)</pre>          |                                           |
| HP       | CP              | (328.332.334)                                                        | :, (5.8.10):,                                                                           | (1.2.4):                                     | .(0.1.2):,                                |
| (3)      | (2)             | <pre>(328,332,334)</pre>                                             | $ \langle (5,8,10); \\ 0.32,0.42 \rangle $                                              | <pre>(1,2,4);<br/>0.43,0.49)</pre>           | ⟨(0,1,2);<br>0.5,0.32⟩                    |
| . ,      | (2)             |                                                                      |                                                                                         |                                              |                                           |
| <br>T TD |                 | (200 202 20()                                                        |                                                                                         | (141(21))                                    |                                           |
| HP       | HP              | <pre>(300,302,306)</pre>                                             | ; $\langle \binom{(16,21,23)}{0.33,0.52} \rangle$                                       | <pre>(14,16,21);<br/>0.51,0.32</pre>         | <pre>(1,2,4);<br/>0.51,0.26</pre>         |
| (3)      | (3)             |                                                                      |                                                                                         |                                              |                                           |
| (3) Tł   | ne custo        | omers asked what v                                                   | would they do if $\tilde{F}$ ch                                                         | ooses to increase the                        | e price                                   |
| other    | r player        | 's Response from                                                     | n customers                                                                             |                                              |                                           |
| c        | hoice           |                                                                      |                                                                                         |                                              |                                           |
| Ĩ        | Ĥ               | $\tilde{I}$ Remains at $\tilde{F}$                                   | Changes to $\tilde{L}$                                                                  | Changes to $\tilde{H}$                       | Discontinue                               |
|          |                 |                                                                      |                                                                                         |                                              | service                                   |
| СР       | СР              | (244.246.24)                                                         | 7);, (44.46.50):.                                                                       | (43.45.46):                                  |                                           |
| (1)      | (1)             | (244,246,24 <sup>°</sup><br>0.52,0.24                                | $\begin{array}{c c} 7);\\ & \langle (44,46,50);\\ & 0.6,0.22 \end{array} \rangle$       | <pre>(43,45,46);<br/>0.5,0.32</pre>          | 〈(4,5,7);<br>(0.5,0.28〉                   |
| CP       |                 |                                                                      |                                                                                         |                                              |                                           |
|          |                 | (227,230,232<br>0.5,0.3                                              | <sup>2);</sup> $\langle {}^{(52,55,58);}_{0.3,0.54} \rangle$                            | $\langle {}^{(48,50,52);}_{0.6,0.3} \rangle$ | <pre>(6,8,11);<br/>0.3,0.53</pre>         |
| (1)      | (2)             | 0.0,0.0                                                              | 0.5,0.5 1                                                                               |                                              | 0.0,0.00                                  |
| •••      |                 | •••                                                                  |                                                                                         |                                              |                                           |
| HP       | CP              | <(215,217,22)                                                        | $\begin{array}{c c} 1);\\ & & \langle {}^{(63,65,69);}_{0.34,0.42} \rangle \end{array}$ | <pre>(48,52,54);<br/>0.51,0.33</pre>         | $\langle (0,2,5); \\ 0.6,0.19 \rangle$    |
| 1        |                 |                                                                      |                                                                                         |                                              |                                           |

| HP  | HP  | /(208,210,212); <sub>\</sub> | ,(63,65,68); <sub>\</sub> | ر(52,55,58); <sub>/</sub> | ,(9,10,13); <sub>\</sub> |
|-----|-----|------------------------------|---------------------------|---------------------------|--------------------------|
| (3) | (3) | ( 0.71,0.18 )                | (0.31,0.52)               | (0.27,0.43)               | 0.51,0.35                |

Table 2: survey results for  $\tilde{F}$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e custo                                                           | mers asked what wo                                                                                                                                                                                       | ould they do if $\widetilde{H}$ c                                                                                                                                                         | hooses to retain the                                                                                                                                                                                                                                                 | e current price                                                                                                               |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   | Response from cus                                                                                                                                                                                        | tomers                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |
| playe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r's                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |
| choice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |
| Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ĩ                                                                 | Remains at <i>Ĥ</i>                                                                                                                                                                                      | Changes to <i>L</i>                                                                                                                                                                       | Changes to <i>F</i>                                                                                                                                                                                                                                                  | Discontinue<br>service                                                                                                        |  |  |  |  |  |  |
| СР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | СР                                                                | $\langle {(153, 157, 160); \atop 0.61, 0.32} \rangle$                                                                                                                                                    | $\langle {(49, 50, 53); \atop 0.42, 0.52} \rangle$                                                                                                                                        | $\langle (27, 29, 31); \\ 0.51, 0.32 \rangle$                                                                                                                                                                                                                        | $\langle {(3,4,6); \atop 0.5,0.31} \rangle$                                                                                   |  |  |  |  |  |  |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                                                               | 0.01,0.32                                                                                                                                                                                                | 0.42,0.52                                                                                                                                                                                 | 0.51,0.52                                                                                                                                                                                                                                                            | 0.5,0.51                                                                                                                      |  |  |  |  |  |  |
| СР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LP                                                                | $\langle {(150, 154, 156); \atop 0.52, 0.33}  angle$                                                                                                                                                     | $\langle {(44,47,49);} \\ 0.31,0.42 \rangle$                                                                                                                                              | $\langle {(34,37,40); \atop 0.51,0.23}  angle$                                                                                                                                                                                                                       | $\langle (2, 4, 5); \\ 0.61, 0.23 \rangle$                                                                                    |  |  |  |  |  |  |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)                                                               | 0.52,0.33                                                                                                                                                                                                | 0.31,0.42                                                                                                                                                                                 | 0.51,0.23                                                                                                                                                                                                                                                            | 0.01,0.23                                                                                                                     |  |  |  |  |  |  |
| •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | •••                                                                                                                                                                                                      | •••                                                                                                                                                                                       | •••                                                                                                                                                                                                                                                                  | •••                                                                                                                           |  |  |  |  |  |  |
| HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | СР                                                                | $\langle {(140, 143, 145); \atop 0.53, 0.36}  angle$                                                                                                                                                     | $\langle {(48,51,53);} \\ 0.4, 0.53 \rangle$                                                                                                                                              | $\langle {(37,40,44);} \\ 0.71,0.2 \rangle$                                                                                                                                                                                                                          | $\langle {(5, 6, 7); \atop 0.32, 0.55} \rangle$                                                                               |  |  |  |  |  |  |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                                                               | 0.55,0.50                                                                                                                                                                                                | 0.4,0.55                                                                                                                                                                                  | 0.71,0.2                                                                                                                                                                                                                                                             | 0.32,0.33                                                                                                                     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | •••                                                                                                                                                                                                      | •••                                                                                                                                                                                       | •••                                                                                                                                                                                                                                                                  | •••                                                                                                                           |  |  |  |  |  |  |
| HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HP                                                                | $\langle {(190, 195, 198); \atop 0.4, 0.6} \rangle$                                                                                                                                                      | $\langle (25, 27, 29); \\ 0.37, 0.42 \rangle$                                                                                                                                             | $\langle (14, 17, 20); \\ 0.5, 0.3 \rangle$                                                                                                                                                                                                                          | $\langle (1, 2, 3) \\ ; 0.5, 0.33 \rangle$                                                                                    |  |  |  |  |  |  |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)                                                               | 0.4,0.0                                                                                                                                                                                                  | 0.37,0.42                                                                                                                                                                                 | 0. 5, 0. 5                                                                                                                                                                                                                                                           | ; 0. 5, 0. 55                                                                                                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` '                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ,                                                               | omers asked what w                                                                                                                                                                                       | ould they do if $\tilde{H}$                                                                                                                                                               | chooses to decrease                                                                                                                                                                                                                                                  | the price                                                                                                                     |  |  |  |  |  |  |
| (2) Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne custo                                                          | omers asked what we<br>Response from cus                                                                                                                                                                 | -                                                                                                                                                                                         | chooses to decrease                                                                                                                                                                                                                                                  | the price                                                                                                                     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne custo                                                          |                                                                                                                                                                                                          | -                                                                                                                                                                                         | chooses to decrease                                                                                                                                                                                                                                                  | the price                                                                                                                     |  |  |  |  |  |  |
| (2) Th<br>other<br>playe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne custo                                                          |                                                                                                                                                                                                          | -                                                                                                                                                                                         | chooses to decrease                                                                                                                                                                                                                                                  | the price                                                                                                                     |  |  |  |  |  |  |
| (2) Th<br>other<br>playe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r's                                                               |                                                                                                                                                                                                          | -                                                                                                                                                                                         | chooses to decrease<br>Changes to $\widetilde{F}$                                                                                                                                                                                                                    | the price<br>Discontinue<br>service                                                                                           |  |  |  |  |  |  |
| (2) Th<br>other<br>player<br>ch<br>Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r's                                                               | Response from cus<br>Remains at <i>Ĥ</i>                                                                                                                                                                 | changes to <i>L</i>                                                                                                                                                                       | Changes to <i>F</i>                                                                                                                                                                                                                                                  | Discontinue                                                                                                                   |  |  |  |  |  |  |
| (2) Th<br>other<br>player<br>ch<br><u>Ĩ</u><br>CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r's<br>noice                                                      | Response from cus                                                                                                                                                                                        | tomers                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | Discontinue<br>service                                                                                                        |  |  |  |  |  |  |
| (2) The other player of $\tilde{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r's<br>noice<br><b>F</b><br>CP                                    | Response from cusRemains at $\tilde{H}$ $\langle (195, 198, 202); \\ 0.5, 0.25 \rangle$                                                                                                                  | Changes to $\tilde{L}$<br>$\langle (23, 27, 30); \\ 0.4, 0.6 \rangle$                                                                                                                     | Changes to $\tilde{F}$<br>$\langle (13, 16, 18); \\ 0.5, 0.32 \rangle$                                                                                                                                                                                               | Discontinue<br>service<br>⟨− −⟩                                                                                               |  |  |  |  |  |  |
| (2) Th<br>other<br>player<br>ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r's<br>noice<br><b>F</b><br>(1)                                   | Response from cus<br>Remains at <i>Ĥ</i>                                                                                                                                                                 | changes to <i>L</i>                                                                                                                                                                       | Changes to <i>F</i>                                                                                                                                                                                                                                                  | Discontinue<br>service                                                                                                        |  |  |  |  |  |  |
| (2) Therefore the constraint of the constraint o | r's<br>noice<br>$\tilde{F}$<br>(1)<br>LP                          | Response from cusRemains at $\tilde{H}$ $\langle (195, 198, 202); \\ 0.5, 0.25 \rangle$                                                                                                                  | Changes to $\tilde{L}$<br>$\langle (23, 27, 30); \\ 0.4, 0.6 \rangle$                                                                                                                     | Changes to $\tilde{F}$<br>$\langle (13, 16, 18); \\ 0.5, 0.32 \rangle$                                                                                                                                                                                               | Discontinue<br>service<br>⟨− −⟩                                                                                               |  |  |  |  |  |  |
| (2) The other player character chara | r's<br>noice<br>$\tilde{F}$<br>(1)<br>LP<br>(2)                   | Response from cus         Remains at $\tilde{H}$ $\langle (195, 198, 202); \\ 0.5, 0.25 \rangle$ $\langle (178, 181, 184); \\ 0.54, 0.31 \rangle$                                                        | tomers<br>Changes to $\tilde{L}$<br>$\langle (23, 27, 30); \\ 0.4, 0.6 \rangle$<br>$\langle (30, 33, 36); \\ 0.39, 0.53 \rangle$<br>                                                      | Changes to $\tilde{F}$<br>$\langle \begin{array}{c} (13, 16, 18); \\ 0.5, 0.32 \end{array} \rangle$<br>$\langle \begin{array}{c} (18, 21, 25); \\ 0.51, 0.28 \end{array} \rangle$<br>                                                                                | Discontinue<br>service<br>$\langle \rangle$<br>$\langle (1,3,4); \rangle$<br>$\langle 0.6, 0.25 \rangle$                      |  |  |  |  |  |  |
| (2) Th<br>other<br>player<br>ch<br>$\tilde{L}$<br>(1)<br>(1)<br>(1)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r's<br>noice<br>$\tilde{F}$<br>(1)<br>LP<br>(2)<br>               | Response from cus         Remains at $\tilde{H}$ $\langle (195, 198, 202); \\ 0.5, 0.25 \rangle$ $\langle (178, 181, 184); \\ 0.54, 0.31 \rangle$                                                        | tomers<br>Changes to $\tilde{L}$<br>$\langle (23, 27, 30); \\ 0.4, 0.6 \rangle$<br>$\langle (30, 33, 36); \\ 0.39, 0.53 \rangle$                                                          | Changes to $\tilde{F}$<br>$\langle \begin{array}{c} (13, 16, 18); \\ 0.5, 0.32 \end{array} \rangle$<br>$\langle \begin{array}{c} (18, 21, 25); \\ 0.51, 0.28 \end{array} \rangle$                                                                                    | Discontinue<br>service<br>$\langle \rangle$<br>$\langle \begin{array}{c} (1,3,4); \\ 0.6, 0.25 \end{array} \rangle$<br>       |  |  |  |  |  |  |
| (2) The other player $CP$ (1) $CP$ (1) $CP$ $CP$ (1) $CP$ $CP$ $CP$ $CP$ $CP$ $CP$ $CP$ $CP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r's<br>noice<br>$\tilde{F}$<br>(1)<br>LP<br>(2)<br><br>HP         | Response from cus         Remains at $\tilde{H}$ $\langle (195, 198, 202); \\ 0.5, 0.25 \rangle$ $\langle (178, 181, 184); \\ 0.54, 0.31 \rangle$                                                        | tomers<br>Changes to $\tilde{L}$<br>$\langle (23, 27, 30); \\ 0.4, 0.6 \rangle$<br>$\langle (30, 33, 36); \\ 0.39, 0.53 \rangle$<br>                                                      | Changes to $\tilde{F}$<br>$\langle \begin{array}{c} (13, 16, 18); \\ 0.5, 0.32 \end{array} \rangle$<br>$\langle \begin{array}{c} (18, 21, 25); \\ 0.51, 0.28 \end{array} \rangle$<br>                                                                                | Discontinue<br>service<br>$\langle \rangle$<br>$\langle \begin{pmatrix} (1,3,4); \\ 0.6, 0.25 \end{pmatrix}$<br>              |  |  |  |  |  |  |
| (2) Th<br>other<br>player<br>ch<br>$\tilde{L}$<br>(1)<br>(1)<br>(1)<br>(1)<br>LP<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r's<br>noice<br><b>F</b><br>(1)<br>LP<br>(2)<br><br>HP<br>(3)     | Response from cus         Remains at H         ⟨(195, 198, 202);         0.5, 0.25         ⟨(178, 181, 184);         (178, 181, 184);         0.54, 0.31            ⟨(214, 217, 220);         0.51, 0.36 | tomers<br>Changes to $\tilde{L}$<br>$\langle (23, 27, 30); \\ 0.4, 0.6 \rangle$<br>$\langle (30, 33, 36); \\ 0.39, 0.53 \rangle$<br><br>$\langle (18, 20, 21); \\ 0.54, 0.41 \rangle$<br> | Changes to $\tilde{F}$<br>$\langle \begin{array}{c} (13, 16, 18); \\ 0.5, 0.32 \end{array} \rangle$<br>$\langle \begin{array}{c} (18, 21, 25); \\ 0.51, 0.28 \end{array} \rangle$<br><br>$\langle \begin{array}{c} (5, 7, 9); \\ 0.69, 0.18 \end{array} \rangle$<br> | Discontinue<br>service<br>$\langle \rangle$<br>$\langle (1,3,4); \rangle$<br>$0.6, 0.25 \rangle$<br><br>$\langle \rangle$<br> |  |  |  |  |  |  |
| (2) Therefore (2) The other player (2) The other pl | r's<br>noice<br><b>F</b><br>(1)<br>LP<br>(2)<br><br>HP<br>(3)<br> | Response from cus         Remains at H         ⟨(195, 198, 202);         0.5, 0.25         ⟨(178, 181, 184);         (178, 181, 184);         0.54, 0.31            ⟨(214, 217, 220);         0.51, 0.36 | tomers<br>Changes to $\tilde{L}$<br>$\langle (23, 27, 30); \rangle$<br>0.4, 0.6<br>$\langle (30, 33, 36); \rangle$<br>0.39, 0.53<br><br>$\langle (18, 20, 21); \rangle$<br>0.54, 0.41     | Changes to $\tilde{F}$<br>$\langle {(13, 16, 18); \atop 0.5, 0.32} \rangle$<br>$\langle {(18, 21, 25); \atop 0.51, 0.28} \rangle$<br><br>$\langle {(5, 7, 9); \atop 0.69, 0.18} \rangle$                                                                             | Discontinue<br>service<br>$\langle \rangle$<br>$\langle (1, 3, 4); \rangle$<br>$0, 6, 0, 25 \rangle$<br><br>$\langle \rangle$ |  |  |  |  |  |  |

| other |       | Response from cus                                    | stomers                                           |                                                     |                                                 |
|-------|-------|------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| playe | r's   |                                                      |                                                   |                                                     |                                                 |
| cł    | noice |                                                      |                                                   |                                                     |                                                 |
| Ĩ     | Ĩ     | Remains at <i>Ĥ</i>                                  | Changes to $\tilde{L}$                            | Changes to $\widetilde{F}$                          | Discontinue<br>service                          |
| СР    | СР    | $\langle {(155, 158, 163); \atop 0.5, 0.32} \rangle$ | $\langle {(45, 49, 51); \atop 0.62, 0.27}  angle$ | $\langle (24, 27, 30); \\ 0.28, 0.52 \rangle$       | $\langle {(3,5,6); \atop 0,62,0,32} \rangle$    |
| (1)   | (1)   | 0.5,0.52                                             | 0.02,0.27                                         | 0.20,0.32                                           | 0.02,0.32                                       |
| СР    | LP    | $\langle (127, 129, 132); \\ 0.58, 0.34 \rangle$     | $\langle {(54, 57, 60); \atop 0.63, 0.25}  angle$ | $\langle (44, 47, 50); \\ 0, 42, 0, 38 \rangle$     | $\langle {(5, 6, 8); \atop 0.51, 0.33} \rangle$ |
| (1)   | (2)   | 0.58,0.34                                            | 0.63,0.25                                         | 0.42,0.38                                           | 0.51,0.33                                       |
|       |       |                                                      |                                                   |                                                     |                                                 |
| HP    | LP    | $\langle (139, 145, 149); \\ 0.6, 0.32 \rangle$      | $\langle {(46, 49, 51); \atop 0.55, 0.34}  angle$ | $\langle {(38, 42, 44);} \\ 0.56, 0.35 \rangle$     | $\langle {(3,5,7); \atop 0.7,0,21} \rangle$     |
| (3)   | (2)   | 0.6,0.32                                             | 0.55,0.34                                         | 0.56,0.35                                           | 0.7,0.21                                        |
|       |       |                                                      |                                                   |                                                     |                                                 |
| HP    | HP    | $\langle (120, 123, 125); \\ 0.5, 0.3 \rangle$       | $\langle {(62, 66, 70); \atop 0.6, 0.33}  angle$  | $\langle {(39, 43, 45); \atop 0, 7, 0, 12} \rangle$ | $\langle {(5,7,10);} \\ 0.25, 0.62 \rangle$     |
| (3)   | (3)   | 0.5,0.3                                              | 0.6,0.33                                          | 0.7,0.12                                            | 0.25,0.62                                       |

Table 3: survey results for  $\tilde{H}$ 

Here  $\tilde{L}_o=1000$  ,  $\tilde{F}_o=600, \tilde{H}_o=400$  and  $\tilde{l}_o=500, \tilde{f}_o=350$  ,  $\tilde{h}_o=250$  .

Using the equations (1),(2), (3) the payoffs are calculated for every combinations of strategies for each players . The calculated payoffs are given in the tables 4,5 and 6

| Strategy<br>combinations | $\tilde{l}_{ijk}$                                     |
|--------------------------|-------------------------------------------------------|
| i, j, k                  |                                                       |
| 111                      | $\langle (910.4, 923.43, 943.09); 0.4, 0.6 \rangle$   |
| 112                      | ⟨(922.4,938.34,956.69);0.31,0.55⟩                     |
|                          |                                                       |
| 332                      | $\langle (830.17, 851.83, 869.89); 0.3, 0.42 \rangle$ |
| 333                      | ⟨(771.2,795.03,820.57);0.31,0.52⟩                     |

# Table 4: Player *L*'s Expected Payoffs

| Strategy combinations | $\tilde{f}_{ijk}$                                      |
|-----------------------|--------------------------------------------------------|
| i, j, k               |                                                        |
| 111                   | ⟨(596.05,610.12,624.17); 0.46, 0.32⟩                   |
| 112                   | $\langle (584.12, 597.77, 613.43); 0.41, 0.34 \rangle$ |
|                       |                                                        |

Vol. 12. Issue.4. 2024 (Oct-Dec)

Bull.Math.&Stat.Res (ISSN:2348-0580)

| 332 | $\langle (527.66, 549.17, 569.54); 0.25, 0.58 \rangle$ |
|-----|--------------------------------------------------------|
| 333 | $\langle (544.68, 564.66, 580); 0.51, 0.35 \rangle$    |

# Table 5: Player $\tilde{F}$ 's Expected Payoffs

| Strategy combinations | $\widetilde{h}_{ijk}$                                                                                                        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
| i, j, k               |                                                                                                                              |
| 111                   | ⟨( <b>348.34,367.09,380.91</b> ); <b>0.39,0.5</b> ⟩                                                                          |
| 112                   | ⟨( <b>359</b> , <b>71</b> , <b>373</b> , <b>14</b> , <b>388</b> , <b>69</b> ); <b>0</b> , <b>35</b> , <b>0</b> , <b>52</b> ⟩ |
| •••                   | •••                                                                                                                          |
| 332                   | $\langle (449.77, 471.71, 492.46); 0.25, 0.61 \rangle$                                                                       |
| 333                   | $\langle (403.14, 423.89, 439.43); 0.25, 0.62 \rangle$                                                                       |

# Table 6: Player $\tilde{H}$ 's Expected Payoffs

The payoffs in the table in the form of TIFNs are converted into crisp payoff values using definition (2.3). Calculated values are listed in the table 7,

| Strategies | Ĩ      | Ĩ      | Ĥ     |  |
|------------|--------|--------|-------|--|
| i, j, k    |        |        |       |  |
| 111        | 185.99 | 175.22 | 82.7  |  |
| 112        | 179.45 | 161.3  | 78.5  |  |
| •••        | •••    |        |       |  |
| 332        | 188.73 | 93.19  | 76.58 |  |
| 333        | 158.7  | 165.23 | 67.58 |  |

# **Table 7: Payoff values**

The equilibrium solution is calculated using the GAMBIT 2022(version 16.0.2)program package .The estimated payoff values for every strategic combination are entered in the cells of the strategic game table given in figure 1. The standard algorithm process is applied to calculate the nash equilibrium solution shown in figure 2.



Figure 1. Payoff matrices

| a         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | s 🥱 🥐   | tin 🚨   | ••• 13 1 | 00<br>00 |     |     |    |     |     |    |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|---------|----------|----------|-----|-----|----|-----|-----|----|-----|--|
| Image: Constraint of the second se | 🐣 Player 1          |         |         |          | 1        |     |     | 2  |     |     | 3  |     |  |
| Payoff. 203.00       3       176       65       137       217       91       166       213       84       159         Apport. 203.00       2       1       220       101       209       142       76       168       204       85       197         Payoff. 101.00       2       2.01       68       147       155       49       123       203       68       195         3       191       52       173       223       86       172       188       93       144         3       191       138       118       168       56       117       209       142       188       166       101       118         3       2       202       88       112       198       67       158       166       101       118         3       180       60       122       189       77       93       159       68       165         •       One equilibrium by logit tracing in stategic game       11       12       13       2.1       2.2       2.3       3.1       3.2       3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Payoff: 220.00      |         | 1       | 186      | 83       | 175 | 179 | 79 | 161 | 175 | 79 | 132 |  |
| Import         Import<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🔒 Player 2          | 1       | 2       | 209      | 70       | 131 | 162 | 17 | 133 | 160 | 61 | 138 |  |
| • One equilibrium by logit tracing in stategic game           • 2         201         68         147         15         3         191         52         17         225         86         17         225         86         17         12         18         3         191         13         13         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Payoff: 209.00      |         | 3       |          |          |     |     |    | 146 |     |    |     |  |
| Payoff: 101.00<br>Payoff: 101.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A Playor 3          | 2       |         |          |          |     |     |    |     |     |    |     |  |
| J     191     32     113     233     00     112     108     933     144       J     191     138     118     168     966     111     220     97     102       J     2     202     88     112     198     67     158     166     101     118       J     180     60     125     189     77     93     159     68     165       •     One equilibrium by logit tracing in strategic game     113     2.1     2.2     2.3     3.1     3.2     3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |         |         |          |          |     |     |    |     |     |    |     |  |
| 3         2         202         88         112         198         67         158         166         101         118           3         180         60         125         189         77         93         159         68         165           •         One equilibrium by logit tracing in strategic game         113         2:1         2:2         2:3         3:1         3:2         3:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Payon. 101.00       |         | -       |          |          |     |     |    |     |     |    |     |  |
| 3         180         60         125         189         77         93         159         68         165           •         One equilibrium by legit tracing in stategic game           •:1         1:3         2:1         2:2         2:3         3:1         3:2         3:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |         |         |          |          |     |     |    |     |     |    |     |  |
| One equilibrium by logit tracing in strategic game      tra 1:2 1:3 2:1 2:2 2:3 3:1 3:2 3:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 3       |         |          |          |     |     |    |     |     |    |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1:1 1:2 1:3 2:1 2:2 | 2:3 3:1 | 3:2 3:3 |          |          |     |     |    |     |     |    |     |  |

## Figure 2. Equilibrium solution

From the figure 2 it is discovered that the equilibrium solution occurred at the strategy combination (2,1,1). The payoff values with respect to the strategies are 220 for  $\tilde{L}$ , 209 for  $\tilde{F}$  and 101 for  $\tilde{H}$ . The game has only one possible equilibrium solution. So being the oldest in the market the best possible strategy for  $\tilde{L}$  is to decrease their price to gain maximum profit and best strategic choices for  $\tilde{F}$  and  $\tilde{H}$  are to maintain their existing price.

## **Conclusion :**

After analysing the constructed model for solving triopoly games with Triangular Intuitionistic Fuzzy payoffs we can deduce that the technique is more accurate in finding the equilibrium strategies than the previously used method. This method can be used directly when the survey is not necessary to form the payoff matrix. The players in the structure are non- cooperative and clearly knows their set of strategies and their opponents strategies. So this method is a benefit for the companies to choose the suitable pricing.

**Competing Interests :** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

# References

- [1]. Elabbasy, E.M.Agiza, H.N.Elsadany (2007), The Dynamics of triopoly game with heterogeneous players, International Journal of Nonlinear Science 3(2),83-90.
- [2]. H.J,Zimmermann (1985), Fuzzy Set theory and It's applications, Norwell.
- [3]. J.Von neumqnn, D.Morgenstern (1944), The Theory of games in Economic Behaviour, Newyork, wiley.
- [4]. J.F,Nash (1950), Equilibrium points in n-person games, vol-36,48-49.
- [5]. J.F,Nash (1951), Non cooperative games, Annals of Mathmatics, 286-295.
- [6]. K.Atnassov (1986), Intuitionistic fuzzy sets, Fuzzy sets and systems, 87-96.
- [7]. L.A,Zadeh (1965), Fuzzy sets ,Inform contr,vol-8,338-353.
- [8]. Mckelvey, Richard D., Mclennan, Andrew M., and Turouy, Theodre L (2022), Gambit Software Tools for game theory, version 16.0.2.
- [9]. M.R.Seikh, P.K.Nayak, M.Pal (2015), Solving bi-Matrix games with payoffs of Triangular Intuitionistic Fuzzy Numbers, *European Journal of pure and Applied Mathematics*, vol 2,153-171.
- [10]. Ozkaya.M, Izgi.B, Perc.M (2022), Axioms of Decision Criteria for 3D Matrix games and their applications.
- [11]. Safet Kozarevic(2014), Modeling of Triopoly strategic Interaction using Three-person Non cooperative games, Journal of game theory,3(3),41-48.
- [12]. S.A.Sahathana Thasneeem, G.Sasikala (2023), Solving Matrix games with Trapezoidal Intuitionistic fuzzy payoffs, *International Journal of Research and Analytical Reviews*, vol-10,289-297.
- [13]. Sugiyama,R.H.C, and Leoneti.A.B (2021), A program to find all pure Nash Equilibria in games with n-players and m-startegies: the Nash Equilibria Finder-NE Finder. Gestao& producao, 28(3).
- [14]. Wu, L., Chen, X., Lu, Y., & Yuan, Y. X. (2013). Stability and allocation in a three-player game. Asia-Pacific Journal of Operational Research, 30(3), Article 1340014. https://doi.org/10.1142/S0217595913400149