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Abstract 

The present paper deals with the determination of temperature, 

displacement and thermal stresses in a thick (𝑀 ≠ 0) circular plates. A 

thick circular plate is subjected to arbitrary known interior 

temperature under steady state, the fixed circular edge of a circular 

plate are thermally insulated and lower surface of thick circular plate 

is at zero temperature. Here we compute the effects of Michell’s 

function on the thickness of circular plate by considering the 

comparative study of thick  and thin circular plate in terms of stresses 

along radial direction and modify Kulkarni (2008). The governing heat 

conduction equation has been solved by the method of integral 

transform technique. The results are obtained in a series form in terms 

of Bessel’s functions. The results for stresses have been computed 

numerically and illustrated graphically. 

Keywords: Thermal stresses, inverse problem, thick(M ≠ 0) circular 

plate, thin(M = 0) circular plate.                               

 

INTRODUCTION  

The inverse thermoelastic problem consists of determination of the temperature of the 

heating medium, the heat flux on the boundary surfaces of the limiting thick circular plate 

when the conditions of the displacement and stresses are known at the some points of the 

limiting thick circular plate under consideration. Noda et al. (1989) discussed an analytical 
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method for an inverse problem of three dimensional transient thermoelasticity in a 

transversely isotropic solid by integral transform technique with newly designed potential 

function and illustrated practical applicability of the method in engineering problem. 

Deshmukh and Wankhede (1998) studied an inverse transient problem of quasi static thermal 

deflection of a thin clamped circular plate. 

Bhongade and Durge (2013) considered thick circular plate and discuss, effect of 

Michell function on steady state behavior of thick circular plate, now here we consider a  thick 

circular plate with internal heat generation subjected to arbitrary known interior temperature. 

Under steady state, the fixed circular edge of a limiting thick circular plate are thermally 

insulated and lower surface thick circular plate is kept at zero temperature. Here we compute 

the effects of Michell’s function on the thickness of circular plate by considering the 

comparative study of thick  and thin circular plates in terms of stresses along radial direction 

and modify Kulkarni (2008). The governing heat conduction equation has been solved by the 

method of integral transform technique. The results are obtained in a series form in terms of 

Bessel’s functions.  A mathematical model has been constructed for thick (𝑀 ≠ 0) and 

thin (𝑀 = 0) circular plates with the help of numerical illustration by considering aluminum 

(pure) circular plate. No one previously studied such type of problem. This is new 

contribution to the field. 

The inverse problem is very important in view of its relevance to various industrial 

mechanics subjected to heating such as the main shaft of lathe, turbines, the role of rolling mill 

and in the study of aerodynamic heating.   

Formulation of the problem 

Consider a thick (𝑀 ≠ 0)circular plate of thickness 2h defined by 0 ≤ 𝑟 ≤ 𝑎, −ℎ ≤ 𝑧 ≤

ℎ. Let the plate be subjected to arbitrary known interior temperature 𝑓(𝑟) within region−ℎ <

𝑧 < ℎ. With circular surface 𝑟 = 𝑎 are thermally insulated and lower surface 𝑧 = −ℎ is at zero 

temperature. Assume the boundary of thick circular plate is free from traction.   Under these 

prescribed conditions, the thermal steady state temperature, displacement and stresses in a 

thick circular plate with internal heat generation are required to be determined.   

The differential equation governing the displacement potential function 𝜙(𝑟, 𝑧) is 

given in Noda et al. (2003)as  

𝜕2𝜙

𝜕𝑟2 +
1

𝑟
 
𝜕𝜙

𝜕𝑟
+

𝜕2𝜙

𝜕𝑧2 =  𝐾𝝉                                             (1) 

where K is the restraint coefficient and temperature change 𝜏 = 𝑇 −  𝑇𝑖,  𝑇𝑖   is ambient 

temperature. Displacement function 𝜙 is known as Goodier’s thermoelastic displacement 

potential.          

The steady state temperature 𝑇(𝑟, 𝑧) of the plate satisfying heat conduction equation 

as follows, 

𝜕2𝑇

𝜕𝑟2 +
1

𝑟
 
𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2 + 
𝑞

𝑘
=  0                                   (2) 

with the conditions 

𝜕𝑇

𝜕𝑟
= 0  𝑎𝑡   𝑟 = 𝑎, −ℎ ≤ 𝑧 ≤ ℎ                            (3) 
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𝑇 = 0  𝑎𝑡 𝑧 = −ℎ, 0 ≤ 𝑟 ≤ 𝑎                  (4) 

𝑇 = 𝑓(𝑟) (𝑘𝑛𝑜𝑤𝑛) 𝑎𝑡   𝑧 = 𝜉 , −ℎ < 𝜉 < ℎ, 0 ≤ 𝑟 ≤ 𝑎                   (5)            

and 

𝑇 = 𝑔(𝑟) (unknown) at   z = ℎ , 0 ≤ 𝑟 ≤ 𝑎                     (6) 

where k is the thermal conductivity of the material of the plate, q is internal heat generation. 

The Michell’s function M must satisfy 

∇2∇2𝑀 = 0                (7)    

 where 

∇2=  
𝜕2

𝜕𝑟2 +
1

𝑟
 

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2                           

The components of the stresses are represented by the thermoelastic displacement potential 

𝜙 and Michell’s function M as 

𝜎𝑟𝑟 = 2𝐺 {
𝜕2𝜙

𝜕𝑟2 −  𝐾𝜏 +  
𝜕

𝜕𝑧
[𝑣∇2𝑀 −  

𝜕2𝑀

𝜕𝑟2 ] }                         (8) 

𝜎𝜃𝜃 = 2𝐺 {
1

𝑟
 
𝜕𝜙

𝜕𝑟
−  𝐾𝜏 +  

𝜕

𝜕𝑧
[𝑣∇2𝑀 −

1

𝑟
 
𝜕𝑀

𝜕𝑟
 ] }             

(9)    𝜎𝑧𝑧 = 2𝐺 {
𝜕2𝜙

𝜕𝑧2 −  𝐾𝜏 +  
𝜕

𝜕𝑧
[(2 − 𝑣)∇2𝑀 −  

𝜕2𝑀

𝜕𝑧2 ] }                                  (10)          

  and 

 𝜎𝑟𝑧 = 2𝐺 {
𝜕2𝜙

𝜕𝑟𝜕𝑧
+  

𝜕

𝜕𝑟
[(1 − 𝑣)∇2𝑀 −  

𝜕2𝑀

𝜕𝑧2 ] }        (11) 

where G and v are the shear modulus and Poisson’s ratio respectively.   

         For traction free surface stress functions   

 𝜎𝑟𝑟 = 𝜎𝑟𝑧 = 0 𝑎𝑡   𝑟 = 𝑎, −ℎ ≤ 𝑧 ≤ ℎ                                                (12) 

Equations (1) to (12) constitute mathematical formulation of the problem.  

Solution                    

To obtain the expression for temperature T (r, z), we introduce the finite Hankel transform 

over the variable r and its inverse transform defined by Ozisik (1968) as 

 �̅�(𝛽𝑚, 𝑧) =  ∫ 𝑟 𝐾0(𝛽𝑚, 𝑟)
𝑎

0
 𝑇(𝑟, 𝑧) 𝑑𝑟                                                             (13) 

 𝑇(𝑟, 𝑧)  =  ∑ 𝐾0(𝛽𝑚, 𝑟)∞
𝑚=1  �̅�(𝛽𝑚, 𝑧)                        (14) 

where 𝐾0(𝛽𝑚, 𝑟) =   
√2

𝑎
  

𝐽0(𝛽𝑚𝑟)

𝐽0(𝛽𝑚𝑎)
 ,                    (15)  

 𝛽1, 𝛽2 … ..   are   roots of transcendental equation 

𝐽1(𝛽𝑚𝑎) =  0            (16) 

where  𝐽𝑛(𝑥) is Bessel function of the first kind of order n.  

On applying the finite Hankel transform defined in the Eq. (13) and its inverse transform 

defined in Eq. (14) to the Eq. (2), one obtains the expression for temperature as  
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𝑇(𝑟, 𝑧) = ∑ √2

𝑎

𝐽0(𝛽𝑚𝑟)

𝐽0(𝛽𝑚𝑎)
∞
𝑚=1  {

𝐴(𝛽𝑚, −ℎ)
𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧−𝜉)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]

−[𝐴(𝛽𝑚, ξ) − 𝐹(𝛽𝑚)]
𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧+ℎ)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
+ 𝐴(𝛽𝑚, 𝑧)

}                           (17) 

where  F(𝛽𝑚) is the Hankel transform of 𝑓(𝑟) and  𝐴(𝛽𝑚, 𝑧) is particular integral of differential 

Eq.(2).  

Michells function M                            

Now suitable form of M which satisfy Eq. (8)   is given by  

𝑀 = 𝐾 ∑ 𝐹(𝛽𝑚)∞
𝑚=1  

√2

𝑎
  

𝐽0(𝛽𝑚𝑟)

𝐽0(𝛽𝑚𝑎)
  {

𝐵𝑚 sinh[ 𝛽𝑚(𝑧 + h)]
+ 𝐶𝑚 𝛽𝑚(𝑧 + h) cosh[ 𝛽𝑚(𝑧 + h) 

}                            (18) 

where  𝐵𝑚 𝑎𝑛𝑑 𝐶𝑚 are arbitrary functions. 

Goodiers Thermoelastic Displacement Potential 𝜙(r, z) 

Assuming the displacement function 𝜙(𝑟, 𝑧) which satisfies Eq. (1) as    

 𝜙(𝑟, 𝑧) = K ∑ √2

𝑎
  

𝐽0(𝛽𝑚𝑟)

𝐽0(𝛽𝑚𝑎)
∞ 
m=1    

                 × {
𝐴(𝛽𝑚, −ℎ)

𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧−𝜉)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]

−[𝐴(𝛽𝑚, ξ) − 𝐹(𝛽𝑚)]
𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧+ℎ)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
+ 𝐴(𝛽𝑚, −ℎ) 𝑒𝛽𝑚(z+h)

}          (19) 

Now using Eqs. (17), (18) and (19) in Eqs. (8), (9), (10) and (11), one obtains the expressions 

for stresses respectively as 

 
𝜎𝑟𝑟

𝐾
 = 2𝐺 ∑  

√2

𝑎 𝐽0(𝛽𝑚𝑎)
    − [𝛽𝑚

2 𝐽1′ (𝛽𝑚𝑟) +  𝐽0(𝛽𝑚𝑟)] ∞
𝑚=1  

             ×  [𝐴(𝛽𝑚, −ℎ)
𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧−𝜉)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
+ [𝐹(𝛽𝑚) − 𝐴(𝛽𝑚, ξ)]

𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧+ℎ)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
] 

              − [𝛽𝑚
2 𝐽1

′ (𝛽𝑚𝑟) 𝐴(𝛽𝑚, −ℎ)𝑒𝛽𝑚(z+h) +  𝐽0(𝛽𝑚𝑟) 𝐴(𝛽𝑚, 𝑧)] 

              + 𝛽𝑚
2𝐹(𝛽𝑚)𝐶𝑚 [

𝛽𝑚
2 𝐽1

′ (𝛽𝑚𝑟)(𝑧 + h) sinh[ 𝛽𝑚(𝑧 + h)

[2𝑣  𝐽0(𝛽𝑚𝑟) +  𝐽1′ (𝛽𝑚𝑟)]𝛽𝑚𝑐𝑜𝑠h[ 𝛽𝑚(𝑧 + h)]
] 

               + 𝛽𝑚
3𝐹(𝛽𝑚) 𝐵𝑚   𝐽1′ (𝛽𝑚𝑟) cosh[ 𝛽𝑚(𝑧 + h)]         (20) 

 
𝜎𝜃𝜃

𝐾
 = 2𝐺 ∑ √2

𝑎 𝐽0(𝛽𝑚𝑎)
   − ∞

𝑚=1 [ 𝛽𝑚
 𝐽1(𝛽𝑚𝑟)

𝑟
+  𝐽0(𝛽𝑚𝑟)] 

              ×  [𝐴(𝛽𝑚, −ℎ)
𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧−𝜉)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
+ [𝐹(𝛽𝑚) − 𝐴(𝛽𝑚, ξ)]

𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧+ℎ)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
]  

              − [𝛽𝑚
 𝐽1(𝛽𝑚𝑟)

𝑟
𝐴(𝛽𝑚, −ℎ)𝑒𝛽𝑚(z+h) +  𝐽0(𝛽𝑚𝑟)𝐴(𝛽𝑚, 𝑧)] 

               + 𝛽𝑚
2 𝐹(𝛽𝑚)𝐶𝑚   [

𝛽𝑚
2  𝐽1(𝛽𝑚𝑟)

𝑟
(𝑧 + h) sinh[ 𝛽𝑚(𝑧 + h)

[2𝑣 𝛽𝑚 𝐽0(𝛽𝑚𝑟) +
 𝐽1(𝛽𝑚𝑟)

𝑟
 ]𝛽𝑚𝑐𝑜𝑠h[ 𝛽𝑚(𝑧 + h)]

] 
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                + 𝛽𝑚
2𝐹(𝛽𝑚) 𝐵𝑚  

 𝐽1(𝛽𝑚𝑟)

𝑟
 cosh[ 𝛽𝑚(𝑧 + h)]           (21) 

 
𝜎𝑧𝑧

𝐾
 = 2𝐺 ∑ √2 𝐽0(𝛽𝑚𝑟)

𝑎 𝐽0(𝛽𝑚𝑎)
   (𝛽𝑚

2 − 1) ∞
𝑚=1  

               ×  [𝐴(𝛽𝑚, −ℎ)
𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧−𝜉)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
+ [𝐹(𝛽𝑚) − 𝐴(𝛽𝑚, ξ)]

𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧+ℎ)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
] 

                + 𝛽𝑚
2𝐴(𝛽𝑚, −ℎ)𝑒𝛽𝑚(z+h) − 𝐴(𝛽𝑚, 𝑧) −  𝛽𝑚

3𝐹(𝛽𝑚) 𝐵𝑚 cosh[ 𝛽𝑚(𝑧 + h)] 

               + 𝛽𝑚
3 𝐹(𝛽𝑚)𝐶𝑚〈 (1 − 2𝑣) cosh[ 𝛽𝑚(𝑧 + h)] − 𝛽𝑚(𝑧 + h) sinh[ 𝛽𝑚(𝑧 + h) 〉     (22) 

   
𝜎𝑟𝑧

𝐾
 = 2𝐺 ∑ (−𝛽𝑚

2)
√2 𝐽1(𝛽𝑚𝑟)

𝑎 𝐽0(𝛽𝑚𝑎)
    ∞

𝑚=1  

                  ×    [𝐴(𝛽𝑚, −ℎ)
𝑐𝑜𝑠 ℎ[𝛽𝑚(𝑧−𝜉)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
+ [𝐹(𝛽𝑚) − 𝐴(𝛽𝑚, ξ)]

𝑐𝑜𝑠 ℎ[𝛽𝑚(𝑧+ℎ)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
] 

                  + 𝐴(𝛽𝑚, −ℎ)𝑒𝛽𝑚(z+h) −  𝛽𝑚
3𝐹(𝛽𝑚) 𝐵𝑚 sinh[ 𝛽𝑚(𝑧 + h)]    

                  + 𝛽𝑚
4 𝐹(𝛽𝑚)𝐶𝑚〈 (−2𝑣) sinh[ 𝛽𝑚(𝑧 + h)] − 𝛽𝑚(𝑧 + h) cosh[ 𝛽𝑚(𝑧 + h) 〉        (23) 

In order to satisfy condition (12), solving Eqs. (20) and (23) for 𝐵𝑚 and 𝐶𝑚 one obtain, 

𝐵𝑚 = 0,           (24) 

𝐶𝑚 =    [𝛽𝑚
2 𝐽1′ (𝛽𝑚𝑎) +  𝐽0(𝛽𝑚𝑎)] 

           ×  [𝐴(𝛽𝑚, −ℎ)
𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧−𝜉)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
+ [𝐹(𝛽𝑚) − 𝐴(𝛽𝑚, ξ)]

𝑠𝑖𝑛 ℎ[𝛽𝑚(𝑧+ℎ)]

𝑠𝑖𝑛 ℎ[(𝛽𝑚+ξ)h]
] 

            +  𝛽𝑚
2 𝐽1

′ (𝛽𝑚𝑎)𝐴(𝛽𝑚, −ℎ)𝑒2𝛽𝑚h +  𝐽0(𝛽𝑚𝑎)𝐴(𝛽𝑚, ℎ)    ×
1

𝑅
    (25) 

where  𝑅 = 𝛽𝑚
3𝐹(𝛽𝑚) [

2𝛽𝑚h  𝐽1′ (𝛽𝑚𝑎)sinh( 2𝛽𝑚h)

(2v 𝐽0(𝛽𝑚𝑎) +  𝐽1′ (𝛽𝑚𝑎))cosh (2𝛽𝑚h)
] 

SPECIAL CASE AND NUMERICAL CALCULATIONS 

Setting 

(1) f(r)  =   𝑟2 

           𝐹( 𝛽𝑚) =
𝑎 √2  

  𝐽0( 𝛽𝑚𝑎)
 [𝑎𝐽1(𝛽𝑚𝑎) − 2𝐽2(𝛽𝑚𝑎)] 

(2)  𝑞(𝑟, 𝑧)  = 𝛿(𝑟 − 𝑟0)𝛿(𝑧 − 𝑧0) 

    �̅�( 𝛽𝑚, 𝑧) =  ∫ 𝑟’
𝑎

𝑟’=0
 
√2

𝑎
  

𝐽0(𝛽𝑚𝑟)

𝐽0(𝛽𝑚𝑎)
 𝛿(𝑟 − 𝑟0)𝛿(𝑧 − 𝑧0) 𝑑𝑟’  

  =
√2

𝑎
 

𝛿(𝑧−𝑧0)

  𝐽0( 𝛽𝑚𝑎)
𝑟0  𝐽0( 𝛽𝑚𝑟0) 

where 𝛿(𝑟) is well known diract delta function of argument r. 

𝑎 = 1𝑚, for thick plate ℎ = 0.100000000015𝑚 and for  thin plate ℎ = 0.099999999995𝑚. 
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𝑟0 = 0.5𝑚, 𝑧0 = 0.05𝑚  

Material Properties 

The numerical calculation has been carried out for aluminum (pure) circular plate with the 

material properties defined as 

Thermal diffusivity α = 84.18× 10−6 m2s−1,  

Specific heat 𝑐𝜌 = 896 J/kg,    

Thermal conductivity k = 204.2 W/m K, 

Shear modulus 𝐺 = 25.5 𝐺 pa, 

Poisson ratio 𝜗 = 0.281.   

Roots of Transcendental Equation 

The 𝛽1 = 3.8317,  𝛽2 = 7.0156,  𝛽3 = 10.1735,  𝛽4 = 13.3237,  𝛽5 = 16.4706,  𝛽6 =

19.6159  are the roots of transcendental equation 𝐽1(𝛽𝑚𝑎) = 0. The numerical calculation and 

the graph has been carried out with the help of mathematical software Mat lab.  

DISCUSSION                               

In this problem, a thick 𝑀 ≠ 0 circular plate is considered which is subjected to arbitrary 

known interior temperature and determined the expressions for unknown temperature, 

displacement and stresses. Here we compute the effects of Michell’s function on the thickness 

of circular plate by considering the comparative study of thick 𝑀 ≠ 0  and thin 𝑀 = 0 circular 

plate by substituting 𝑀 = 0 in Eqs. (8), (9), (10) and (11) and plotted the graphs for stresses 

along radial direction. As a special case mathematical model is constructed for 𝑓(𝑟) =  𝑟2 and 

performed numerical calculation by considering aluminum (pure) circular plate with the 

material properties specified above. 

 

Figure 1 Radial stresses  
𝜎𝑟𝑟

𝐾
 for thick   

plate. 

 

Figure 2 Radial stresses 
𝜎𝑟𝑟

𝐾
  for thin plate. 
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Figure 3 Angular stresses 
σθθ

𝐾
    for thin 

plate. 

 

Figure 4 Angular stresses 
σθθ

𝐾
   for thick  

plate. 

 

Figure 5 Axial stresses 
σzz

𝐾
 for thin plate. 

 

Figure 6 Axial stresses
σzz

𝐾
 for thick plate. 

 
Figure 7 Stresses 

σrz

𝐾
 for  thin plate 

 

Figure 8 Stresses
σrz

𝐾
  for thick plate 

 

From figure 1and 2, it is observed that the radial stresses 
σrr

K
 for thin (𝑀 = 0) and 

thick (𝑀 ≠ 0) plate are increasing for 0.2 ≤ 𝑟 ≤ 0.4, 0.6 ≤ 𝑟 ≤ 0.8  and decreasing for 0.4 ≤

𝑟 ≤ 0.6  along radial direction. Due to Michell’s function the radial stresses 
σrr 

K
  are increasing 

and its nature is tensile along radial direction. 

From figure 3, it is observed that the angular stresses 
σθθ

K
  for thin (𝑀 = 0)  plate are 

decreasing for 0.2 ≤ 𝑟 ≤ 0.6  and it increases rapidly for 0.6 ≤ 𝑟 ≤ 0.8 along radial direction. 

From figure 4, it is observed that the angular stresses 
σθθ

K
  for thick (𝑀 ≠ 0)  plate are 

decreasing for 0.2 ≤ 𝑟 ≤ 0.6  and increasing for 0.6 ≤ 𝑟 ≤ 0.8 along radial direction. Due to 



Vol. 13. Issue.3. 2025 (July-Sept) Bull .Math.&Stat .Res ( ISSN:2348 -0580)  
 

 

18 Chetana Bhongade 

Michell’s function the angular stresses 
σθθ

K
  are increasing and its nature is compressive along 

radial direction. 

From figure 5 it is observed that the axial stresses 
𝜎𝑧𝑧

𝐾
  for thin (𝑀 = 0) plate are 

increasing for 0 ≤ 𝑟 ≤ 0.2, 0.4 ≤ 𝑟 ≤ 0.6   and decreasing for 0.2 ≤ 𝑟 ≤ 0.4, 0.6 ≤ 𝑟 ≤ 0.8  

along radial direction. From figure 6, it is observed that the angular stresses 
σθθ

K
  for 

thick (𝑀 ≠ 0) plate are increasing for 0.2 ≤ 𝑟 ≤ 0.4, 0.6 ≤ 𝑟 ≤ 0.8 𝑎nd decreasing for 0.4 ≤

𝑟 ≤ 0.6 along radial direction. Due to Michell’s function the  axial stresses  
𝜎𝑧𝑧

𝐾
 are increasing 

and its nature tensile along radial direction.  From figure 7, it is observed that the stresses 
𝜎𝑟𝑧

𝐾
 for thin (𝑀 = 0) plate are decreasing for 0 ≤ 𝑟 ≤ 0.2, 0.6 ≤ 𝑟 ≤ 0.8 and increasing for 0.2 ≤

𝑟 ≤ 0.6  along radial direction. From figure 8, it is observed that the stress 
𝜎𝑟𝑧

𝐾
 for 

thick (𝑀 ≠ 0 )plate are increasing for 0 ≤ 𝑟 ≤ 0.2, 0.4 ≤ 𝑟 ≤ 0.8  and decreasing for 0. 2 ≤

𝑟 ≤ 0.4 along radial direction. Due to Michell’s function the stresses 
𝜎𝑟𝑧

𝐾
  are increasing and its 

nature is compressive along radial direction. 

Conclusion 

Due to Michell’s function the radial stresses
σrr

K
 and the axial stresses 

𝜎𝑧𝑧

𝐾
 are increased 

and it is tensile in nature along radial direction, the angular stresses 
σθθ

K
 and the stresses 

𝜎𝑟𝑧

𝐾
 

are decreasing and it is compressive in nature along radial direction. Even though the 

difference between the thickness of thin and thick plate is very small, but all the stresses are 

extremely larged due to Michell’s function along radial direction.  

The results obtained here are useful in engineering problems particularly in the 

determination of state of stress in a thin clamped circular plate, base of furnace of boiler of a 

thermal power plant, gas power plant and the measurement of aerodynamic heating. 
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