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3 The present paper deals with the determination of temperature,
displacement and thermal stresses in a thick (M # 0) circular plates. A
- BOMIR - thick circular plate is subjected to arbitrary known interior
e f temperature under steady state, the fixed circular edge of a circular
Article Iﬁf(; plate are thermally insulated and lower surface of thick circular plate

is at zero temperature. Here we compute the effects of Michell’s
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Published online: 30,/07/2025 comparative study of thick and thin circular plate in terms of stresses

function on the thickness of circular plate by considering the

along radial direction and modify Kulkarni (2008). The governing heat
conduction equation has been solved by the method of integral
transform technique. The results are obtained in a series form in terms
of Bessel’s functions. The results for stresses have been computed
numerically and illustrated graphically.

Keywords: Thermal stresses, inverse problem, thick(M # 0) circular
plate, thin(M = 0) circular plate.

INTRODUCTION

The inverse thermoelastic problem consists of determination of the temperature of the
heating medium, the heat flux on the boundary surfaces of the limiting thick circular plate
when the conditions of the displacement and stresses are known at the some points of the
limiting thick circular plate under consideration. Noda et al. (1989) discussed an analytical
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method for an inverse problem of three dimensional transient thermoelasticity in a
transversely isotropic solid by integral transform technique with newly designed potential
function and illustrated practical applicability of the method in engineering problem.
Deshmukh and Wankhede (1998) studied an inverse transient problem of quasi static thermal
deflection of a thin clamped circular plate.

Bhongade and Durge (2013) considered thick circular plate and discuss, effect of
Michell function on steady state behavior of thick circular plate, now here we consider a thick
circular plate with internal heat generation subjected to arbitrary known interior temperature.
Under steady state, the fixed circular edge of a limiting thick circular plate are thermally
insulated and lower surface thick circular plate is kept at zero temperature. Here we compute
the effects of Michell's function on the thickness of circular plate by considering the
comparative study of thick and thin circular plates in terms of stresses along radial direction
and modify Kulkarni (2008). The governing heat conduction equation has been solved by the
method of integral transform technique. The results are obtained in a series form in terms of
Bessel’s functions. A mathematical model has been constructed for thick (M # 0) and
thin (M = 0) circular plates with the help of numerical illustration by considering aluminum
(pure) circular plate. No one previously studied such type of problem. This is new
contribution to the field.

The inverse problem is very important in view of its relevance to various industrial
mechanics subjected to heating such as the main shaft of lathe, turbines, the role of rolling mill
and in the study of aerodynamic heating.

Formulation of the problem

Consider a thick (M # 0)circular plate of thickness 2/ defined by 0<r <a,-h <z <
h. Let the plate be subjected to arbitrary known interior temperature f(r) within region—h <
z < h. With circular surface r = a are thermally insulated and lower surface z = —h is at zero
temperature. Assume the boundary of thick circular plate is free from traction. Under these
prescribed conditions, the thermal steady state temperature, displacement and stresses in a
thick circular plate with internal heat generation are required to be determined.

The differential equation governing the displacement potential function ¢(r,z) is
given in Noda et al. (2003)as

2 2
Ce iy l= K (1)

ar? r or

where K is the restraint coefficient and temperature change v =T — T; T; is ambient
temperature. Displacement function ¢ is known as Goodier’s thermoelastic displacement
potential.

The steady state temperature T (r, z) of the plate satisfying heat conduction equation
as follows,

9°T 1 0T , 9°T

or a_
arz  r or  0z2 + k 0 (2)
with the conditions

oT _ _ _
5 =0at r=a, -h<z<h 3)
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T=0atz=-h, 0<r<a 4)
T=f()known)at z=§¢, —h<é<h, 0<r<a )

and
T =g(r) (unknown)at z=h, 0<r<a (6)

where k is the thermal conductivity of the material of the plate, g is internal heat generation.

The Michell’s function M must satisfy

V2V2M =0 (7)
where
2_ 0% 10 0%
Vi= or2  r o 0z2

The components of the stresses are represented by the thermoelastic displacement potential
¢ and Michell’s function M as

—26{6¢ KT+ = hv%w-—if } 8)
000 =26 {7 57 = ke + 2 [vwm -2 [}
©)  om=26{22- ki+ 2[@2-vviM- 4] (10)
and
=26 {araz + _[(1 )VZM a 6671\2/1] } (11)

where G and v are the shear modulus and Poisson’s ratio respectively.
For traction free surface stress functions

O =0, =0at r=a, —h<z<h (12)
Equations (1) to (12) constitute mathematical formulation of the problem.

Solution
To obtain the expression for temperature T (r, z), we introduce the finite Hankel transform
over the variable r and its inverse transform defined by Ozisik (1968) as

T(Bm2) = J, 7 Ko(Bry7) T(r,2) dr (13)
T(T', Z) = Z?;)LleO(ﬁm: T') T(ﬁm,Z) (14)
_ \/_E Jo(BmT)
where Ko(Bm, 1) = e JoBr)’ (15)
B1,Pz ... are roots of transcendental equation
Ji(Bma) = 0 (16)

where J,(x) is Bessel function of the first kind of order n.

On applying the finite Hankel transform defined in the Eq. (13) and its inverse transform
defined in Eq. (14) to the Eq. (2), one obtains the expression for temperature as
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sin h[Bm(z=)]
ABm, —h) G Rh[(Bm+E)h]

. (17)
sin h[Bm(z+h)]

w V2 Jo(BmT)
T(r,z) = Zm=17m { [

where F(B,,) is the Hankel transform of f(r) and A(f,, z) is particular integral of differential
Eq.(2).

Michells function M

Now suitable form of M which satisfy Eq. (8) is given by

_ oy V2 Jo(Bmr) { By, sinh[ S, (z + h)] }
M=K Ym=1FBm) T 3 ma) 1+ Cp fi(z + h) cosh[ fyn(z + h) (18)
where B,, and C,, are arbitrary functions.
Goodiers Thermoelastic Displacement Potential ¢ (r, z)
Assuming the displacement function ¢ (r, z) which satisfies Eq. (1) as
_ o \/_E Jo(Bm™)
¢(r’ Z) - szzl a ]O(Bma)
L\ SinA[Bm(z=9)]
% Am =1 G h[(Bm+)h] (19)
in h[Bm(z+h)]
~[ABm D) = F B Grpmsdi - A(B, —h) ePrh)

Now using Egs. (17), (18) and (19) in Egs. (8), (9), (10) and (11), one obtains the expressions
for stresses respectively as

V2

Orr __ o)
= 202m=1 g

{— [.Bmz Ji' (Br) + fo(ﬁmr)]

_py Sinh[Bm(z-9)] _ sin h[Bm(z+h)]

— [Bm® J1Br) ABrm, —h)ePmC+D) 1 1o (8,1 A(Br, 2)]

Bin? Ji(Bm7)(z + h) sinh[ B, (z + h) ]
[2V Jo(Bmr) + J1' (BmT)1Bmcosh[ B (z + )]

4 B FB) B Jo' (B cosh[ B (2 + )]} (20)

+ B F(Br) Com [

990 _ © V2 _ J1(BmT)
% =26 Sier s { = [ A 2Lt Jo(B)

N Sinh[Bm(z=§)] _ sin h[Bm(z+h)]

= [Bn 28 A, —h)ePm ) - o (Bnr) ABm, 2]

B 282 (2 + 1) sinh[ B, (z + h)

+ .Bm2 F(Bm)Cm J1(BmT)
[20 Bin Jo(Bm7) + === 1Bmcosh] By (z + h)]
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+ B’ F(B) By 202 coshl Bz + W] | 1)

T2z _ o VZJo(Bmr) 2 _
=20 Zm=1 ) ("= 1)

1\ SInh[Bm(z=9)] B sin h[Bm(z+h)]

+ B> A(Bp, —)ePm@D — A, 2) — B> F(Bn) B cosh[ B (z + h)]
+ B’ F(Bm)Cin{ (1 — 2v) cosh[ B, (z + h)] — B (z + h) sinh[ B (z + h) >} (22)

Orz __ o _ 2 M
7 =2G Zm:l( ﬁm ) a]()(ﬂma)

1\ €05 h[Bm(z—8)] _ cos h[Bm(z+h)]
x{ (A0 —1) oG o + IF (B = A D) S |

+ A(Bp, —h)ePm@0) — g 3E(B, ) By, sinh[ B, (z + h)]

+ B F(Bm)Cn{ (—2v) sinh[ B (z + h)] = B (z + h) cosh[ B (z + h) ) } (23)
In order to satisfy condition (12), solving Egs. (20) and (23) for B,, and C,, one obtain,
B, =0, (24)
Cn = {[ﬁmzh' (Bm@®) + Jo(Bn®)]

o sinh(Bm(z=)] B sin AlBm(z+h)]

+ B Ji B @) A, ~)e?Pm™ + Jo(Bn@)A(Bm, h)} x (25)

2Bmh Ji" (Bma)sinh(2B,,h) ]
0(Brn@) + J1' (Bna))cosh (2mh)

SPECIAL CASE AND NUMERICAL CALCULATIONS

where R = B,,°F(B,,) [(ZV]

Setting

(1) f(r) = r?

avz
Jo(Bma)
@ q(r,z) =6(r —19)8(z — 2)

_ » V2 Jo(Bm )
A(Bm?) = [iy7 2 REmD §(r — 10)8(2 — 20) dr

F(Bm) = [a]1(Bma) = 2], (Bma)]

_\/_f 8(z-2zp)
=@ Jo(Bma) 0 Jo(BmTo)

where §(r) is well known diract delta function of argument r.

a = 1m, for thick plate h = 0.100000000015m and for thin plate h = 0.099999999995m.
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9o = 0.5m, zy = 0.05m
Material Properties

The numerical calculation has been carried out for aluminum (pure) circular plate with the
material properties defined as

Thermal diffusivity o = 84.18x 107° m?s™,
Specific heat ¢, = 896 ] /kg,

Thermal conductivity k =204.2 W/m K,
Shear modulus G = 25.5 G pa,

Poisson ratio ¥ = 0.281.

Roots of Transcendental Equation

The , = 3.8317, B, = 7.0156, B3 = 10.1735, B, = 13.3237, fs = 16.4706, fs =
19.6159 are the roots of transcendental equation /; ($,,a) = 0. The numerical calculation and
the graph has been carried out with the help of mathematical software Mat lab.

DISCUSSION

In this problem, a thick M # 0 circular plate is considered which is subjected to arbitrary
known interior temperature and determined the expressions for unknown temperature,
displacement and stresses. Here we compute the effects of Michell’s function on the thickness
of circular plate by considering the comparative study of thick M # 0 and thin M = 0 circular
plate by substituting M = 0 in Egs. (8), (9), (10) and (11) and plotted the graphs for stresses
along radial direction. As a special case mathematical model is constructed for f(r) = r? and
performed numerical calculation by considering aluminum (pure) circular plate with the
material properties specified above.
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Figure 2 Radial st 2 for thin plate.
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From figure land 2, it is observed that the radial stresses 2 for thin (M = 0) and

K

thick (M # 0) plate are increasing for 0.2 <r < 0.4,0.6 <r < 0.8 and decreasing for 0.4 <

r < 0.6 alongradial direction. Due to Michell’s function the radial stresses =

and its nature is tensile along radial direction.

Orr

are increasing

From figure 3, it is observed that the angular stresses % for thin (M = 0) plate are

decreasing for 0.2 < r < 0.6 and it increases rapidly for 0.6 < r < 0.8 along radial direction.

From figure 4, it is observed that the angular stresses % for thick (M # 0) plate are

decreasing for 0.2 <r < 0.6 and increasing for 0.6 < r < 0.8 along radial direction. Due to
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. . o . . . . .
Michell’s function the angular stresses % are increasing and its nature is compressive along

radial direction.

From figure 5 it is observed that the axial stresses % for thin (M = 0) plate are
increasing for 0 <r <0.2, 0.4 <r <0.6 and decreasing for 0.2 <r <04,06 <r <0.8
along radial direction. From figure 6, it is observed that the angular stresses 0—1‘29 for
thick (M # 0) plate are increasing for 0.2 <r < 0.4,0.6 <r < 0.8 and decreasing for 0.4 <
r < 0.6 along radial direction. Due to Michell’s function the axial stresses % are increasing
and its nature tensile along radial direction. From figure 7, it is observed that the stresses
% for thin (M = 0) plate are decreasing for 0 < r < 0.2,0.6 < r < 0.8 and increasing for 0.2 <
r <0.6 along radial direction. From figure 8, it is observed that the stress %for
thick (M # 0 )plate are increasing for 0 <r < 0.2, 0.4 <r < 0.8 and decreasing for 0.2 <

r < 0.4 along radial direction. Due to Michell’s function the stresses 07 are increasing and its

nature is compressive along radial direction.

Conclusion

. . . o . 0, .
Due to Michell’s function the radial stresses== and the axial stresses —* are increased
oy s . . . . . O (o
and it is tensile in nature along radial direction, the angular stresses % and the stresses —=

are decreasing and it is compressive in nature along radial direction. Even though the
difference between the thickness of thin and thick plate is very small, but all the stresses are
extremely larged due to Michell’s function along radial direction.

The results obtained here are useful in engineering problems particularly in the
determination of state of stress in a thin clamped circular plate, base of furnace of boiler of a
thermal power plant, gas power plant and the measurement of aerodynamic heating.
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