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Abstract 

We propose a ratio-type estimator for population variance that 

leverages known auxiliary-variable median (𝑀𝑥) and excess kurtosis 

(𝐾𝑥). Derivations of bias and Mean Squared Error (MSE) via first-order 

Taylor series are presented. Analytical efficiency conditions show it 

outperforms traditional unbiased estimators and earlier ratio-type 

methods. A numerical analysis indicates 

that the suggested estimator performs well in terms of a 

reduced mean squared error. 

Keywords: Median, Kurtosis, Auxiliary Variable, Bias and Mean 

squared error.                               

 

1. Introduction 

A key goal of statistical analysis is the accurate assessment of population variance, 

especially in domains like economics, quality control, agriculture and the social sciences. In 

order to evaluate variability, create confidence intervals and carry out hypothesis testing, the 

population variance is necessary. However, gathering complete population data is frequently 

expensive or impossible in real-world applications, therefore effective estimation from a 

sample is essential. 

 Statisticians commonly use auxiliary information—features of a correlated variable 

that are either known or easier to measure than the research variable—to improve the 
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accuracy of such calculations. The ability of an auxiliary variable's median and kurtosis to 

enhance population variance estimators has drawn attention among other auxiliary statistics. 

 The median serves as a reliable indicator of central tendency, especially useful when 

the accompanying variable shows skewness or includes outliers. In contrast to the mean, the 

median is less influenced by extreme values, rendering it particularly insightful in real-world 

datasets that do not follow a normal distribution—for instance, data on household income, 

biological measurements or response times in psychological studies. 

 Conversely, kurtosis offers insights into the sharpness of a distribution. In fields like 

finance, hydrology and environmental monitoring, where extreme occurrences (such as stock 

market crashes, floods or pollution surges) are critical, understanding excess kurtosis assists 

in more accurately describing the shape and spread of the population distribution. When this 

information is available for an auxiliary variable, it can be utilized to improve estimators of 

population variance by taking into account the anticipated departure from normality. Searls 

(1964), Sisodia (1961), Kadilar (2006), Khan (2013), Yadav (2016), Kumari & Thakur (2018, 2019, 

2020), and Kumar et al. (2025) employed auxiliary information to enhance the work they 

proposed. 

 An auxiliary variable's median and kurtosis can be combined to model the 

population structure more thoroughly and robustly. This method works especially well 

for survey sampling, where supplementary data from earlier research or census data is easily 

accessible. According to Kumari and Thakur (2020a, 2020b) and Subramani (2012), using both 

parameters in the estimation process can significantly lower the Mean squared error 

(MSE) when compared to traditional unbiased estimators or those that only use 

one auxiliary statistic. We present a new population variance estimator in this 

study that takes advantage of an auxiliary variable's excess kurtosis and known median. 

Using real-world datasets, we show its practical utility, derive its theoretical 

properties and compare its performance analytically and empirically. 

2. Notation & Setup 

• A simple random sample of size N with no replacement is taken from a finite 

population.  

• Examine variables y and x, with excess kurtosis K(x) and population median M(x) 

known. 

• Estimate population variance 𝑆𝑦
2 of y. 

• 𝑆𝑦
2 =  

1

𝑁−1
 ∑ (𝑌𝑖 − �̅�)2𝑁

𝑖=1  , 𝑆𝑋
2 =  

1

𝑁−1
 ∑ (𝑋𝑖 − �̅�)2𝑁

𝑖=1  

• 𝑠𝑦
2 =  

1

𝑛−1
 ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1  , 𝑠𝑥
2 =  

1

𝑛−1
 ∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1  

• µ𝑟𝑠 =  
1

𝑁−1
 ∑ (𝑦𝑖 − �̅�)𝑟𝑛

𝑖=1 (𝑥𝑖 − �̅�)𝑠 , 𝜆22 =
µ22

µ02µ20
 

• 𝐾𝑥 = 𝜆04 = 
µ04

µ02
2   and 𝐾𝑦 = 𝜆40 = 

µ04

µ20
2  are coefficient of kurtosis of the study and auxiliary 

variable. 

• 𝑀𝑥 be the population median of x. 
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3. Proposed Estimator 

Define the ratio-type estimator: 

𝑡𝑐= 𝛼 𝑠𝑦
2 +  (1 −  𝛼) 𝑠𝑦

2 log
[𝐾𝑥 𝑠𝑥

2+ 𝑀𝑥
2]

[𝐾𝑥 𝑆𝑥
2+ 𝑀𝑥

2]
         (1) 

Where α is a constant. 

To obtain the bias of the proposed estimator, we have 

𝑡𝑐= 𝛼 𝑆𝑦
2 (1 +  𝜀0 ) +  (1 −  𝛼) 𝑆𝑦

2 (1 +  𝜀0 ) log
[𝐾𝑥 𝑆𝑥

2 (1+ 𝜀1 ) + 𝑀𝑥
2]

[𝐾𝑥 𝑆𝑥
2+ 𝑀𝑥

2]
  

    = 𝛼 𝑆𝑦
2 (1 +  𝜀0 ) +  (1 −  𝛼) 𝑆𝑦

2 (1 +  𝜀0 ) log(1 +  𝜂 𝜀1 ) , where 𝞰 = 
[𝐾𝑥 𝑆𝑥

2]

[𝐾𝑥 𝑆𝑥
2+ 𝑀𝑥

2]
 

    = 𝛼 𝑆𝑦
2 (1 +  𝜀0 ) +  (1 −  𝛼) 𝑆𝑦

2 (1 +  𝜀0 ) (𝜂 𝜀1 −  
(𝜂 𝜀1)2

2
 ) 

    = 𝛼 𝑆𝑦
2 (1 +  𝜀0 ) +  (1 −  𝛼) 𝑆𝑦

2  ( 𝜂 𝜀1𝜀0    +  𝜂 𝜀1 −  
(𝜂 𝜀1)2

2
 )     (2) 

Substracting  𝑆𝑦
2  on both the sides of above equation, we get 

 𝑡𝑐 − 𝑆𝑦
2   = 𝛼 𝑆𝑦

2 (1 + 𝜀0 ) + (1 −  𝛼) 𝑆𝑦
2  ( 𝜂 𝜀1𝜀0    +  𝜂 𝜀1 − 

(𝜂 𝜀1)2

2
 ) −  𝑆𝑦

2   

𝑡𝑐 − 𝑆𝑦
2   = (𝛼 − 1) 𝑆𝑦

2 + (𝛼 𝑆𝑦
2 𝜀0 ) + (1 −  𝛼) 𝑆𝑦

2  ( 𝜂 𝜀1𝜀0    +  𝜂 𝜀1 − 
(𝜂 𝜀1)2

2
 )  (3) 

Taking Expectation on both the sides, we have 

E(𝑡𝑐 −  𝑆𝑦
2)   = 𝐸{(𝛼 − 1)𝑆𝑦

2} +𝐸(𝛼 𝑆𝑦
2 𝜀0 ) +  (1 −  𝛼) 𝑆𝑦

2  E ( 𝜂 𝜀1𝜀0    +  𝜂 𝜀1 − 
(𝜂 𝜀1)2

2
 ) 

                       = 𝐸{(𝛼 − 1)𝑆𝑦
2} +𝐸(𝛼 𝑆𝑦

2 𝜀0 ) +   𝑆𝑦
2 (1 −  𝛼) {𝜂 𝐸( 𝜀1𝜀0) − 𝐸

(𝜂 𝜀1)2

2
}               (4) 

Using the formulae, in above expression we obtained the expression of bias. 

E( 𝜀0 )= E( 𝜀1 )= 0, E( 𝜀0 )2= δ (𝜆40 − 1), E( 𝜀1 )2= δ (𝜆04 − 1), E( 𝜀0𝜀1  ) =  δ (𝜆22 − 1) 

Bias( 𝑡𝑐  )= (𝛼 − 1) 𝑆𝑦
2 + (1 −  𝛼) 𝑆𝑦

2  δ {𝜂 (𝜆22 − 1) −
𝜂2

2
 (𝜆04 − 1)}    (5) 

To obtain the mean squared error of the proposed estimator, let us take the square of equation 

(3) on both the sides, 

  (𝑡𝑐 − 𝑆𝑦
2)

2
 = (𝛼 − 1)2 𝑆𝑦

4 + (𝛼2 𝑆𝑦
4  𝜀0

2 ) +  (𝛼 − 1)2 𝑆𝑦
4  ( 𝜂 𝜀1𝜀0    +  𝜂 𝜀1 −  

(𝜂 𝜀1)2

2
 )

2

  

                        + 2 𝑆𝑦
4  𝛼(𝛼 − 1)( 𝜀0 ) − 2𝑆𝑦

4 (𝛼 − 1)2  ( 𝜂 𝜀1𝜀0    +  𝜂 𝜀1 −  
(𝜂 𝜀1)2

2
 ) 

           - 2 𝑆𝑦
4 𝛼(𝛼 − 1)( 𝜂 𝜀1𝜀0 )       (6) 

Taking expectation on both the sides of equation (6), we get 

𝐸(𝑡𝑐 − 𝑆𝑦
2)

2
  = (𝛼 − 1)2 𝑆𝑦

4 + 𝐸(𝛼2 𝑆𝑦
4  𝜀0

2 ) + (𝛼 − 1)2 𝑆𝑦
4  E ( 𝜂 𝜀1𝜀0    +  𝜂 𝜀1 −  

(𝜂 𝜀1)2

2
 )

2

  

                        + 2 𝑆𝑦
4  𝛼(𝛼 − 1)𝐸( 𝜀0 ) − 2𝑆𝑦

4 (𝛼 − 1)2 𝐸 ( 𝜂 𝜀1𝜀0    +  𝜂 𝜀1 − 
(𝜂 𝜀1)2

2
 ) 

           - 2 𝑆𝑦
4 𝛼(𝛼 − 1) 𝜂𝐸( 𝜀1𝜀0 )       (7) 
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On putting the values of expectations, we may get the desired expression for mean squared 

error of our proposed estimator. 

MSE(𝑡𝑐)= (𝛼 − 1)2𝑆𝑦
4 +  𝛼2 𝑆𝑦

4 δ (𝜆40 − 1) +  (𝛼 − 1)2  𝑆𝑦
4 δ(𝜂2 (𝜆04 − 1) ) 

                 −2𝑆𝑦
4 (𝛼 − 1)2 δ {𝜂 (𝜆22 − 1) −

𝜂2

2
 (𝜆04 − 1)}- 2 𝑆𝑦

4 𝛼(𝛼 − 1) 𝜂 δ(𝜆22 − 1)  (8) 

The expression of minimum MSE is obtained by partially differentiating equation (8) with 

respect to α and equating it equals to 0, we obtained the minimum MSE. 

(
𝜕 

𝜕 𝛼
)MSE(𝑡𝑐) = (

𝜕 

𝜕 𝛼
) (𝛼 − 1)2𝑆𝑦

4 + (
𝜕 

𝜕 𝛼
) 𝛼2 𝑆𝑦

4 δ(𝜆40 − 1) + (
𝜕 

𝜕 𝛼
) (𝛼 − 1)2  𝑆𝑦

4 δ(𝜂2 (𝜆04 − 1) ) 

−2 (
𝜕 

𝜕 𝛼
) 𝑆𝑦

4 (𝛼 − 1)2 δ {𝜂 (𝜆22 − 1) −
𝜂2

2
 (𝜆04 − 1)}- 2(

𝜕 

𝜕 𝛼
) 𝑆𝑦

4 𝛼(𝛼 − 1) 𝜂 δ(𝜆22 − 1) = 0 

𝛼𝑜𝑝𝑡 = 
1+𝛿 {2 𝜂2 (𝜆04−1)− 𝜂 (𝜆22−1)}

1+  𝛿{(𝜆40−1)  + 2 𝜂2 (𝜆04−1)− 4𝜂 (𝜆22−1)}
 

4. Efficiency comparisons 

In sample survey, the most important consideration for any one of the estimator is their 

efficiency related to existing estimators. If the proposed estimator has minimum mean 

squared error compared to other estimators which are available in literature, then our 

proposed estimator will have considered the best over conventional estimators. Let us 

compare the efficiency of our proposed formula to the other estimators as below. 

1. Unbiased estimator for population variance 

  𝑡0 = 𝑠𝑦
2 

MSE(𝑡0) =𝑆𝑦
4 δ (𝜆40 − 1) 

MSE(𝑡0) > MSE(𝑡𝑐) 

2. Isaki (1983) ratio estimator for population variance 

𝑡1 = 𝑠𝑦
2 (

𝑆𝑥
2

𝑠𝑥
2⁄ )  

MSE(𝑡1) =𝑆𝑦
4 δ [(𝜆40 − 1) +  (𝜆04 − 1) −  2 (𝜆22 − 1)] 

MSE(𝑡1) > MSE(𝑡𝑐) 

3. Linear regression estimator  

𝑡2 = 𝑠𝑦
2 + 𝑏0(𝑆𝑥

2 − 𝑠𝑥
2) 

MSE(𝑡2) =𝑆𝑦
4 δ [(𝜆40 − 1)  −  (

(𝜆22 − 1)2

(𝜆04 − 1)⁄ ) ] 

MSE(𝑡2) > MSE(𝑡𝑐) 

4. 𝑡3 = 𝑠𝑦
2 exp (

(𝑆𝑥
2 − 𝑠𝑥

2)
(𝑆𝑥

2 + 𝑠𝑥
2)

⁄ ) 

MSE(𝑡3) =𝑆𝑦
4 δ [(𝜆40 − 1) +   

(𝜆04−1)

4
 −   (𝜆22 − 1) ] 

MSE(𝑡3) > MSE(𝑡𝑐) 
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5. Kumar et al. (2011)  𝑡4 = 𝑠𝑦
2 exp (

(𝑠𝑥
2 − 𝑆𝑥

2)
(𝑠𝑥

2 + 𝑆𝑥
2)

⁄ ) 

MSE(𝑡4) =𝑆𝑦
4 δ [(𝜆40 − 1) +   

(𝜆04−1)

4
 −   (𝜆22 − 1) ] 

MSE(𝑡4) > MSE(𝑡𝑐) 

6. Yadav & Kadilar (2013)  𝑡5 = 𝑠𝑦
2 exp (

(𝑆𝑥
2 − 𝑠𝑥

2)
(𝑆𝑥

2 + (−1)𝑠𝑥
2)

⁄ ) 

MSE(𝑡5 𝑚𝑖𝑛) =𝑆𝑦
4 δ [(𝜆40 − 1)  −  (

(𝜆22 − 1)2

(𝜆04 − 1)
⁄ ) ] 

MSE(𝑡5) > MSE(𝑡𝑐) 

7. Misra et al. (2024)  𝑡6 = 𝑠𝑦
2 + α log

[𝑠𝑥
2]

[𝑆𝑥
2]

 

MSE(𝑡6 𝑚𝑖𝑛) =𝑆𝑦
4 δ [(𝜆40 − 1)  −  (

(𝜆22 − 1)2

(𝜆04 − 1)
⁄ ) ] 

MSE(𝑡6) > MSE(𝑡𝑐) 

5. Empirical Studies 

Perform on real datasets. 

Population I  

X = Fixed capital, Y = output of 80 factories, 𝑁 = 80, 𝑛 = 20, �̅� = 11.265 , �̅�  = 51.826, 𝑆𝑥
2 = 71.504 

, 𝑆𝑦
2 = 336.979, 𝑆𝑥𝑦 = 146.068,  𝜆04 = 𝐾𝑥  = 2.866, 𝜆40 = 𝐾𝑦 = 2.267 , 𝜆22 = 2.221, 𝜌𝑥𝑦= 0.941, 𝐶𝑦= 

0.354,  𝐶𝑥= 0.751, 𝑀𝑥= 10.300 

Population II 

X = acreage under wheat crop in 1973, Y = acreage under wheat crop in 1974, 𝑁 = 70, 𝑛 = 25, 

�̅� = 175.2671 , �̅�  = 96.700, 𝑆𝑥
2 = 19840.7508 , 𝑆𝑦

2 = 3686.1898, 𝜆04 = 𝐾𝑥  = 7.0952, 𝜆40 = 𝐾𝑦 = 4.7596 

, 𝜆22 = 4.6038, 𝜌𝑥𝑦= 0.7293, 𝐶𝑦= 0.6254,  𝐶𝑥= 0.8037, 𝑀𝑥= 72.4375 

Table 1: Mean Square error (MSE) of estimators 

Estimator MSE of Population I MSE of Population II 

𝑡1 5395 1313625.00 

𝑡2 2942 924946.50 

𝑡3 1993 1385199 

𝑡4 2182 586861 

𝑡5 1993 1385199 

𝑡6 1993 1385199 

𝑡𝑐 1802 1384204 
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6. Conclusions 

Knowing the auxiliary median and kurtosis helps the estimator reduce variance 

estimation error. It is useful in survey contexts with such auxiliary data because of its proven 

theoretical superiority and empirical advantages. 
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