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Abstract 

According to the established requirements, the distribution that 

minimizes the Kullback-Leibler divergence is chosen using the 

minimal likeliness distance (divergence) metric principle. This 

fundamental principle generalizes various approaches that have been 

put forth independently and cover a wide range of distributions. 

Additionally, we point out that the Lagrangian approach is a 

particular instance of minimum distance (divergence) metric (MDM) 

with a uniform posterior distribution. To provide much-needed 

clarification, this study is done in intuitionistic fuzzy environment 

thatgives us the analytical solutionand the direction which highlights 

this link. 

Keywords: Aggregation, Lagrangian approach, distance (divergence) 

metric, Gamma Distribution, Thresholding, Optimization.                               

 

1. Introduction 

For every uncertain decision, estimating the underlying probability distribution of 

the decision options is a necessary step [4]. For instance, the distribution of profitability 

is necessary when making investments, and the probability of failure for each alternative 

is necessary when constructing an engineered solution. The minimum distance 

(divergence) metric approach was put forth by Edwin T. Jaynes [5] as a way to establish 

prior probabilities in decision analysis. The Kullback-Leibler [6] divergence is the 

objective of entropy methods, which rely on the optimization of an objective function. 
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26 Rohit Kumar Verma 

The optimization problem, which has also been solved by Verma [11, 12, 13, 14, 15] 

incorporates the available information as constraints. In decision analysis, both directions 

of the distance metric approach are frequently employed, especially when combining 

expert opinion [1]. The (divergence) metric [10] assesses how closely two probability 

distributions, 𝑃and 𝑄, are connected. It can be used to determine the distribution 𝑃 that 

satisfies a set of requirements and is closest to a target distribution 𝑄 using the notion of 

minimal (divergence) metric (MDM), where the "closeness" is determined by the 

Kullback-Leibler divergence [6, 7]. To find the solution to the probabilistic problem 

presented above, Kullback [7] first maximized a measure of directed divergence owing to 

Chernoff [2] concerning the relevant parameter. The seven optimization problems have 

been solved by Kapur's [8]and Verma’s [11, 13], and the solution is dependent on the 

Kullback-Leibler divergence's measure of directed divergence [6] for a discrete reference 

distribution 𝑄 calculated with a discrete distribution 𝑃 is 

                                                                      𝐷(𝑃, 𝑄) = ∑ 𝑝𝑖 ln
𝑝𝑖

𝑞𝑖

𝑛
𝑖=1    

To find the solution to the probabilistic problem presented below, Kullback [7] first 

maximized a measure of directed divergence owing to Chernoff [2] concerning the relevant 

parameter. For a discrete reference distribution 𝑄 estimated with a discrete distribution 𝑃, the 

Kullback-Leibler divergence is 𝐷(𝑃, 𝑄) = ∑ 𝑝𝑖 𝑙𝑛
𝑝𝑖

𝑞𝑖

𝑛
𝑖=1 , and Kapur's [8] and Verma’s [11, 12, 16] 

solution relies on this measure. We are now given three probability distributions, 𝑃 =

(𝑝1, … , 𝑝𝑛), 𝑄 = (𝑞1, … , 𝑞𝑛) and 𝑅 = (𝑟1, … , 𝑟𝑛), each of which has a 𝑝𝑖 > 0, 𝑞𝑖 > 0and 𝑟𝑖 > 0 with 

∑ 𝑝𝑖 = 1𝑛
𝑖=1 , ∑ 𝑞𝑖 = 1𝑛

𝑖=1  and ∑ 𝑟𝑖 = 1𝑛
𝑖=1 .Let 𝑃 = (𝑝1, … , 𝑝𝑛) be a probability distribution. 

Shannon's [9] provides the measure 𝑆(𝑃) = ∑ 𝑝𝑖 ln 𝑝𝑖
𝑛
𝑖=1 . 

We take into account the following optimization issues: 

Problem Find the probability distribution that is closest to 𝑄 (or 𝑅) among all those 

that are equally distant from 𝑄 and 𝑅. 

Here, the term "distance of P from Q" refers to the directed divergence of Havrda and 

Charvat [3] of 𝑃from 𝑄, 𝑖. 𝑒., 

𝐷(𝑃, 𝑄) =
1

1−𝛼
(∑ 𝑝𝑖

𝛼𝑞𝑖
1−𝛼 − 1𝑛

𝑖=1 ), 𝛼 ≠ 1. 

To find the solution to the probabilistic problem presented above, Kullback [7] first 

maximized a measure of directed divergence owing to Chernoff [2] concerning the relevant 

parameter. The seven optimization problems have been solved by Kapur's [8], and the 

solution is based on the Kullback-Leibler [6] measure of directed divergence of 𝑃from 𝑄, 

which is  

𝐷(𝑃, 𝑄) = ∑ 𝑝𝑖log𝐷 
𝑝𝑖

𝑞𝑖

𝑛
𝑖=1 . 

1.1 Measures of Distance (Divergence) Metric 

If (𝑖)𝐷(𝑄, 𝑅) ≥ 0, 

(𝑖𝑖)𝐷(𝑄, 𝑅) = 0iff 𝑞𝑖 = 𝑟𝑖, for each 𝑖 
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(𝑖𝑖𝑖)𝐷(𝑄, 𝑅)is a convex function of both 𝑞1, … , 𝑞𝑛 and 𝑟1, … , 𝑟𝑛, then 𝐷(𝑄, 𝑅) will be taken into 

consideration as a measure of directed divergence of the probability distribution 𝑄 from the 

probability distribution 𝑅. 

1.2 Intuitionistic Fuzzy Set 

If 𝐹 be a fixed set then an intuitionistic fuzzy set [10] 𝑆 in 𝐹 is an object having the form 

𝑆 = {< 𝑥, 𝜇𝑠(𝑥), 𝜈𝑠(𝑥) >/𝑥 ∈ 𝐹}.Where the function 𝜇𝑠(𝑥) and 𝜈𝑠(𝑥) define the degree of 

membership and degree of non membership of the element 𝑥 ∈ 𝑆 to 𝑆 ⊂ 𝐹 respectively. The 

function 𝜇𝑠(𝑥) and 𝜈𝑠(𝑥) satisfy the condition (∀𝑥 ∈ 𝐹)(0 ≤ 𝜇𝑠(𝑥) + 𝜈𝑠(𝑥) ≤ 1). 

2. Our Results 

In light of the fact that Havrda and Charvat [3] measure 

𝐷(𝐵, 𝐶) =
1

𝛼−1
∑ (𝜇𝐵(𝑥𝑖))

𝛼
((𝜇𝐶(𝑥𝑖))

1−𝛼
− 1)𝑛

𝑖=1 +
1

𝛼−1
∑ (𝜈𝐵(𝑥𝑖))

𝛼
((𝜈𝐶(𝑥𝑖))

1−𝛼
− 1)𝑛

𝑖=1 , 𝛼 ≠ 1 

satisfies each of these requirements.  

2.1 Arrangement of the Problem 

The aforementioned issue must be reduced, subject to 

1

𝛼 − 1
∑(𝜇𝐴(𝑥𝑖))

𝛼
((𝜇𝐵(𝑥𝑖))

1−𝛼
− 1)

𝑛

𝑖=1

+
1

𝛼 − 1
∑(𝜈𝐴(𝑥𝑖))

𝛼
((𝜈𝐵(𝑥𝑖))

1−𝛼
− 1)

𝑛

𝑖=1

= 

1

𝛼 − 1
∑(𝜇𝐴(𝑥𝑖))

𝛼
((𝜇𝐶(𝑥𝑖))

1−𝛼
− 1)

𝑛

𝑖=1

+
1

𝛼 − 1
∑(𝜈𝐴(𝑥𝑖))

𝛼
((𝜈𝐶(𝑥𝑖))

1−𝛼
− 1)

𝑛

𝑖=1

 

𝑖. 𝑒.
1

𝛼 − 1
∑(𝜇𝐴(𝑥𝑖))

𝛼
((𝜇𝐵(𝑥𝑖))

1−𝛼
− (𝜇𝐶(𝑥𝑖))

1−𝛼
)

𝑛

𝑖=1

+ 

1

𝛼 − 1
∑(𝜈𝐴(𝑥𝑖))

𝛼
((𝜈𝐵(𝑥𝑖))

1−𝛼
− (𝜈𝐶(𝑥𝑖))

1−𝛼
)

𝑛

𝑖=1

= 0 

and                                                  ∑ (𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖)) = 1𝑛
𝑖=1 . 

Using Lagrange’s method 

𝐿 ≡
1

𝛼 − 1
∑(𝜇𝐴(𝑥𝑖))

𝛼
((𝜇𝐵(𝑥𝑖))

1−𝛼
− 1)

𝑛

𝑖=1

+
1

𝛼 − 1
∑(𝜈𝐴(𝑥𝑖))

𝛼
((𝜈𝐵(𝑥𝑖))

1−𝛼
− 1) +

𝑛

𝑖=1

 

𝜆1(𝛼 − 1)−1 ∑(𝜇𝐴(𝑥𝑖))
𝛼

((𝜇𝐵(𝑥𝑖))
1−𝛼

− (𝜇𝐶(𝑥𝑖))
1−𝛼

) +

𝑛

𝑖=1

 

𝜆1(𝛼 − 1)−1 ∑(𝜈𝐴(𝑥𝑖))
𝛼

((𝜈𝐵(𝑥𝑖))
1−𝛼

− (𝜈𝐶(𝑥𝑖))
1−𝛼

)

𝑛

𝑖=1

 

𝜆2 (∑𝜇𝐴(𝑥𝑖) − 1

𝑛

𝑖=1

) + 𝜆2 (∑𝜈𝐴(𝑥𝑖) − 1

𝑛

𝑖=1

) 
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Now, 

𝜕𝐿

𝜕𝜇𝐴(𝑥1)
=

1

𝛼 − 1
∑((𝜇𝐴(𝑥𝑖))

𝛼−1
(𝜇𝐵(𝑥𝑖))

1−𝛼
)

𝑛

𝑖=1

+
1

𝛼 − 1
∑((𝜈𝐴(𝑥𝑖))

𝛼−1
(𝜈𝐵(𝑥𝑖))

1−𝛼
)

𝑛

𝑖=1

+ 

𝜆1𝛼(𝛼 − 1)−1 ∑(𝜇𝐴(𝑥𝑖))
𝛼−1

((𝜇𝐵(𝑥𝑖))
1−𝛼

− (𝜇𝐶(𝑥𝑖))
1−𝛼

) +

𝑛

𝑖=1

 

𝜆1𝛼(𝛼 − 1)−1 ∑ (𝜈𝐴(𝑥𝑖))
𝛼−1

((𝜈𝐵(𝑥𝑖))
1−𝛼

− (𝜈𝐶(𝑥𝑖))
1−𝛼

) +𝑛
𝑖=1 𝜆2 = 0. 

Then, we achieve 

𝜇𝐴(𝑥𝑖) =
[(1 + 𝜆1)(𝜇𝐵(𝑥𝑖))

𝛼−1
− 𝜆1(𝜇𝐶(𝑥𝑖))

1−𝛼
]

1

𝛼−1

∑ [(1 + 𝜆1)(𝜇𝐵(𝑥𝑖))
𝛼−1

− 𝜆1(𝜇𝐶(𝑥𝑖))
1−𝛼

]

1

𝛼−1𝑛
𝑖=1

 

and                               𝜈𝐴(𝑥𝑖) =
[(1+𝜆1)(𝜈𝐵(𝑥𝑖))

𝛼−1
−𝜆1(𝜈𝐶(𝑥𝑖))

1−𝛼
]

1
𝛼−1

∑ [(1+𝜆1)(𝜈𝐵(𝑥𝑖))
𝛼−1

−𝜆1(𝜈𝐶(𝑥𝑖))
1−𝛼

]

1
𝛼−1𝑛

𝑖=1

 . 

Now, setting 1 + 𝜆1 = 𝛽 ⇒ −𝜆1 = 1 − 𝛽 and this implies that 

𝜇𝐴(𝑥𝑖) =
[𝛽(𝜇𝐵(𝑥𝑖))

𝛼−1
+ (1 − 𝛽)(𝜇𝐶(𝑥𝑖))

1−𝛼
]

1

𝛼−1

∑ [𝛽(𝜇𝐵(𝑥𝑖))
𝛼−1

+ (1 − 𝛽)(𝜇𝐶(𝑥𝑖))
1−𝛼

]

1

𝛼−1𝑛
𝑖=1

 

and                                𝜈𝐴(𝑥𝑖) =
[𝛽(𝜈𝐵(𝑥𝑖))

𝛼−1
+(1−𝛽)(𝜈𝐶(𝑥𝑖))

1−𝛼
]

1
𝛼−1

∑ [𝛽(𝜈𝐵(𝑥𝑖))
𝛼−1

+(1−𝛽)(𝜈𝐶(𝑥𝑖))
1−𝛼

]

1
𝛼−1𝑛

𝑖=1

. 

Thus out of all the distribution 

∑

[
 
 
 [𝛽(𝜇𝐵(𝑥𝑖))

𝛼−1
+ (1 − 𝛽)(𝜇𝐶(𝑥𝑖))

1−𝛼
]

1

𝛼−1

∑ [𝛽(𝜇𝐵(𝑥𝑖))
𝛼−1

+ (1 − 𝛽)(𝜇𝐶(𝑥𝑖))
1−𝛼

]

1

𝛼−1𝑛
𝑖=1 ]

 
 
 
𝛼

((𝜇𝐵(𝑥𝑖))
1−𝛼

− (𝜇𝐶(𝑥𝑖))
1−𝛼

) = 0

𝑛

𝑖=1

 

and        ∑ [
[𝛽(𝜈𝐵(𝑥𝑖))

𝛼−1
+(1−𝛽)(𝜈𝐶(𝑥𝑖))

1−𝛼
]

1
𝛼−1

∑ [𝛽(𝜈𝐵(𝑥𝑖))
𝛼−1

+(1−𝛽)(𝜈𝐶(𝑥𝑖))
1−𝛼

]

1
𝛼−1𝑛

𝑖=1

]

𝛼

((𝜈𝐵(𝑥𝑖))
1−𝛼

− (𝜈𝐶(𝑥𝑖))
1−𝛼

) = 0𝑛
𝑖=1 . 

Letting, 

𝐺(𝛽) ≡ ∑

[
 
 
 [𝛽(𝜇𝐵(𝑥𝑖))

𝛼−1
+ (1 − 𝛽)(𝜇𝐶(𝑥𝑖))

1−𝛼
]

1

𝛼−1

∑ [𝛽(𝜇𝐵(𝑥𝑖))
𝛼−1

+ (1 − 𝛽)(𝜇𝐶(𝑥𝑖))
1−𝛼

]

1

𝛼−1𝑛
𝑖=1 ]

 
 
 
𝛼

((𝜇𝐵(𝑥𝑖))
1−𝛼

− (𝜇𝐶(𝑥𝑖))
1−𝛼

)

𝑛

𝑖=1

 

+∑

[
 
 
 [𝛽(𝜈𝐵(𝑥𝑖))

𝛼−1
+ (1 − 𝛽)(𝜈𝐶(𝑥𝑖))

1−𝛼
]

1

𝛼−1

∑ [𝛽(𝜈𝐵(𝑥𝑖))
𝛼−1

+ (1 − 𝛽)(𝜈𝐶(𝑥𝑖))
1−𝛼

]

1

𝛼−1𝑛
𝑖=1 ]

 
 
 
𝛼

((𝜈𝐵(𝑥𝑖))
1−𝛼

− (𝜈𝐶(𝑥𝑖))
1−𝛼

) = 0

𝑛

𝑖=1
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Then, 𝐺(0) = (𝛼 − 1)𝐷(𝐶, 𝐵), and 𝐺(1) = −(𝛼 − 1)𝐷(𝐵, 𝐶). If 0 < 𝛼 < 1 then 𝐺(0) < 0and 

𝐺(1) > 0. Obviously, 𝐺(𝛽) has a root lying between 0and 1, assuming that it is 𝛽0, then we 

have a solution of our problem 

(𝐷(𝐴, 𝐵))
𝑚𝑖𝑛

=
1

𝛼 − 1

[
 
 
 
 

∑ [𝛽0(𝜇𝐵(𝑥𝑖))
𝛼−1

+ (1 − 𝛽0)(𝜇𝐶(𝑥𝑖))
1−𝛼

]

𝛼

𝛼−1𝑛
𝑖=1

[∑ [𝛽0(𝜇𝐵(𝑥𝑖))
𝛼−1

+ (1 − 𝛽0)(𝜇𝐶(𝑥𝑖))
1−𝛼

]

1

𝛼−1𝑛
𝑖=1 ]

𝛼 − 1

]
 
 
 
 

 

+
1

𝛼 − 1

[
 
 
 
 

∑ [𝛽0(𝜈𝐵(𝑥𝑖))
𝛼−1

+ (1 − 𝛽0)(𝜈𝐶(𝑥𝑖))
1−𝛼

]

𝛼

𝛼−1𝑛
𝑖=1

[∑ [𝛽0(𝜈𝐵(𝑥𝑖))
𝛼−1

+ (1 − 𝛽0)(𝜈𝐶(𝑥𝑖))
1−𝛼

]

1

𝛼−1𝑛
𝑖=1 ]

𝛼 − 1

]
 
 
 
 

 

On taking 𝛼 → 1, then we achieve 

(𝐷(𝐴, 𝐵))
𝑚𝑖𝑛

=
∑ (𝜇𝐵(𝑥𝑖))

𝛽0
(𝜇𝐶(𝑥𝑖))

1−𝛽0
log𝐷(𝜇𝐵(𝑥𝑖))

𝛽0
(𝜇𝐶(𝑥𝑖))

1−𝛽0𝑛
𝑖=1

∑ (𝜇𝐵(𝑥𝑖))
𝛽0

(𝜇𝐶(𝑥𝑖))
1−𝛽0𝑛

𝑖=1

 

+
∑ (𝜈𝐵(𝑥𝑖))

𝛽0
(𝜈𝐶(𝑥𝑖))

1−𝛽0
log𝐷(𝜈𝐵(𝑥𝑖))

𝛽0
(𝜈𝐶(𝑥𝑖))

1−𝛽0𝑛
𝑖=1

∑ (𝜈𝐵(𝑥𝑖))
𝛽0

(𝜈𝐶(𝑥𝑖))
1−𝛽0𝑛

𝑖=1

 

Now, applying the limiting condition 𝛽0 → 0, then we have (𝐷(𝐴, 𝐵))
𝑚𝑖𝑛

= −𝑆(𝑅) where 𝑆(𝑅) 

is Shannon’s measure of entropy for the probability distribution 𝑅 = 𝑟1, … , 𝑟𝑛. 

3. Conclusion 

In this communication, we looked at Kapur's [8] approaches to the optimization  

issues. We have resolved the first of seven optimization problems by employing the 

Lagrangian policy in IF-criterion. The convexity characteristics of the measure of distance 

(divergence) resulting from Havrda and Charvat's measure of entropy determine problems 

and their solutions. 
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