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Abstract

For the generalized fuzzy useful R-norm Verma information measure,
where R and a serve as two flexible parameters, this communication
aids in the development of a coding theorem. Additionally, we look
at the codeword length in both scenarios and we find that one is more
effective than the other.
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Introduction

By incorporating a parameter 'R' (or 'a') to provide flexibility, particularly for “useful”
information (considering event utility) and non-additive scenarios, the R-norm information
measure is a generalised framework in information theory that extends standard measures
like Shannon's entropy. It finds applications in fuzzy logic, coding theory, and decision-
making by better handling uncertainty and imprecision, frequently through axiomatic
definitions and relationships to other divergence measures.

Mathematical studies of the issues related to massage transmission, storage, and
communication led to the development of information theory. It started with Shannon's [16]
seminal work “The Mathematical Theory of Communication”. Renyi [15], Arimoto [2],
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Sharma and Taneja [17], Verma [19, 20], Peerzada et al. [14], Deluca and Termini [13], and
Kaufmann [12] all examined different generalisations of Shannon entropy. The human miracle
and many real-world objectives are based on uncertainty and ambivalence. Contrast is found
in the choices we make, the words we use, and the information we take in.

Bockee and Lubbe [5] R-norm information measure of a discrete probability
distribution P = (Py, P, .., Py),p; 2 0,i =1,2...,n. Where Y[, p; = 1 and

R*={R:R>0,R # 1}

given by Hp(P) = % [1 O le)E]’ (1.1)

the R-norm information measure (1.1) is a real function A,— R*, defined on A,, where n > 2
and R* is the set of positive real numbers. This measure is different from Shannon’s entropy
[16], Renyi [15] and Havrda and Charvat [10] and Daroczy [7].

The most interesting property of this measure is that when R — 1, R-norm information
measure (1.1) approaches to Shannon’s entropy and in case R — oo, Hz(P) = (1 — maxp;), i =
1,2..,n.

The measure (1.1) has been generalized by Hooda and Anant [2] as

2-8
R\ =F

R 5_B R
1L11{j(1>)=R+ﬁ_2 1—< P! ’3> L0<B<1R(>0) %1 (1.2)

(1.1) has been called as the generalized R-norm entropy if degree f which reduces to (1,2)
when 8 = 1. In case R = 1, (1.2) reduces to

1 \27F
HE(P) = ﬁ[1 - < {;1p§“’> ,L0<pB<1. (1.3)

. 1.
Setting r = g0 (1.3), we get

H(P) =2 [1- (C,pl)] t<r <. (1.4)

which is a measure mentioned by Arimoto [2] as an example of a generalized class of
information measure.

As an illustration of a broad measure of distribution, Boekee and Lubbe [5] recognised and
examined the R-norm information measure put forth by Arimoto [2]. Hooda and Sharma [8]
suggested modifications to the fuzzy information rule in line with the R standard measures
suggested by Hooda and Ram [9], which are comparable to the measurements of Boekee and
Lubbe [5]. Additionally, expanded on the findings of measurements to gauge R-regulatory
data. The measurements provided are measured by Kumar and Choudhary [18] using the
following model for a random experiment S,

Sy = [E; P; U]

Where E = (Ey, E;, ..., Ey) is a finite system of events happening with respective probabilities
P = (P, P, ..., Py),p; = 0and Y p; = 1 and credited with utilities U = (uq, uy, ..., uy), u; =
0,i =1,2,...,N. Denote the model by E, where
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E, E,..Ey

U U WUy

We call (1.5) a Utility Information Scheme (UIS) proposed a measure of information called
“useful information’ for this scheme, given by

H(U;P) = —Yu;p;Inp;,

where H(U; P) reduces to Shannon’s [9] entropy when the utility aspect of the scheme is
ignored i.e. when u; = 1for each i. Throughout the paper, = will stand fori = 1,2 ..., N.

Information is mostly used to eliminate ambiguity and uncertainty. The amount of probability
uncertainty that is overlooked during the experiment is actually used to restrict the data that
is presented; this measure of uncertainty is referred to as a measure of information up to the
degree of uncertainty. It is a gauge of ambiguity and uncertainty.

Zadeh [22] created the theory of fuzzy sets (FS), which is a condensed version of conventional
set theory for representing ambiguous and indeterminate occurrences. This idea is a useful
tool for understanding how the human system behaves, when judgements, perceptions, and
emotions are crucial. Ambiguity in a restricted set of concepts is defined as the degree of
ambiguity that reveals the extent of the ambiguity or issue within us, determining whether or
not an element is part of the set. The idea of exponential resonance was expanded to include
fuzzy phenomena by Bhandari and Pal [4]. Ambiguous metrics due to information
uncertainty were examined by Kapur [11].

Lotfi A. Zadeh's fuzzy set theory [22] has been widely applied in numerous scientific and
technological fields. Fuzzy measures have already been applied to computer science,
engineering, fuzzy traffic control, fuzzy aviation control, medicine, and decision making,
among other fields. For example, the publications Aczel [3], Kapur [11], Verma [18, 21], Renyi
[15], and Bockee and Van Der Lubbe [5] provide the lower bound for the mean code-word
length of a uniquely decipherable code in terms of Shannon's [16] entropy. Kapur [11] has
demonstrated connections between coding and probability entropy. Therefore, in instances
when probabilistic measures of entropy are ineffective, the concept of fuzziness might be
investigated rather than using probability.

Given a universe of discourse X = {x4, X, ..., X}, a fuzzy subset of it is defined as follows:
A = {(x0 ma(x): x; € X, pa(x) € [0,1])

where p,(x;) : X = [0,1] is a membership function that provides the degree to which element
x; belongs to the set A. It is defined as follows:

0if x; € Aand there is no ambiguity,
Ua(x;) = 1if x; € A and there is no ambiguity,
0.5if x; € Aor x; € A and there is no ambiguity.

Some fuzzy set concepts that we will require for our discussion, according to Zadeh []
ContainmentIf A € B © u,(x;) < ug(x;) Vx; € X
Equality If A = B © pa(x)) = up(x;) Vx; € X

Complement If A€ is complement of A & pye(x;) =1 — puy(x;) Vx; € X
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Union If AU B is union of A and B & p,,p(x;) = Max {u(x;), ug(x)} Vx; € X
Intersection If A N B is union of A and B & pynp(x;) = Min {u,(x;), ug(x;)} vx; € X
Product If AB is product of A and B < pup(x;) = ua(xp), up(x;) Vx; € X

SumIf A+ Bissumof Aand B < py,.p(x;) = ua(x;) + ug(x;) — pa(x)ug(x;) Vx; € X
2. New Results

Claim 2.1 The generalized word length Lz (A: U) meets the inequality if the code word lengths

. n (1+aﬂA(xi))(llA(xi))_1
ll: l21 ] ln SatISfy Zi=1 uilogD ( (1+a)ﬂA(xi)

Lr(A:U) = Vg(A:U), a > 0,R(# 1) > 0. Where equality, for Verma i. e. hybrid Burg measure,
is valid if

7. __R n ] 1+apy(x;) #p(xi) 1+ap 4c(x;) tge(xi)
lll C1-R logo (Hi:l b ((MB(xi)+aMA(xi)) ' (MBC(xi)+auAc(xi)) )

R-1

).D_lil(T) <1 for any integers >1

(1+a)ﬂA(xi)-HA(xi) (1+a)'uAc(xi)-HAc(xi))

Ttapa(x) ° ltapye(x)
Proof: Since Lr(A:U) = Vx(A:U)
own o (1+auA(xi))(uA(xi))‘1> -1,(BY))
l.e.2i=1ullogD(( Lty D 'ulr )| =

Yieiuilogp <(LA(’CL'))HB(X0 + (M)#HC(’CO)
1= 4

up(xp)+apa(x;) uge(x)+apac(x;)

)”B(xi) (1+aMAc(x1'))uBC(Xi)

R-1 )
i.e.logpD 'Rk = Y ulogp < (1+apaCxs)

(up(xD+ans (xi))uB(xi) | (#Bc(xi)+au,4c (xi))uBC(xi).

(1+a)”A(xi) (1+a)”AC(xi)
(1+amaGd)(raGxd) ™ (1+auAc(xi))(uAc(x,-))_1

) \H#B(x) o(xi pge(x))
ety = (S mtogy (it ) (ot

up(x))+apa(x;) pge () +apc(x;)

R
(1+a)”A(xi) (1+a)“AC(xi) R-1
(1+apaCe))(max))” (1+auAc (Xi))(MAC (xi))_1

. T+apa(x) \#BOD) Ttapue() \MBe(D)
e togo ety sy

up(x))+apa(x;) ppe(x)+apc(x;)
R
R-1
(1+a)Halx) (A+aytacti)
(1+apa(x))(pa (xi))_1 . (1+aMAc (xi))(.uAC(Xi))_l

R Trapa(x) \MBOD Trape(x)  \MBe@D)
-ty ([ (Y (st

pp(xp)+apa(x;) pge () +aue(x;)

A+ A0 py () (1+a)* Ac(x").uAc(xi)
1+apa(x) 1+apyc(xy)
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Hence the result.

Claim 2.2 The generalized word length Ly (A: U) meets the inequality if the code-word lengths

(14 apa (D) uaCe)aCD (1+apee) uge e Hactd o) < 4
(1+ayral) ' (a+aytacti ' .

l, 1, ..., 1, satisfy XL,y logD<

for any integers > 1 Lr(A:U) = Vz(4:U), a > 0,R(# 1) > 0. Where equality, for modified
Verma i. e. hybrid Shannon measure, is valid if

up(xy) tpe(xi)
. __RrR n o 1+apa(x;) 1+ap c(xy)
llz ) lOgD Hi:l U; +a‘uA(xl:) 1+a‘“AC(xi)
I‘B(xz) #Bc(xi)
A+ )\ FAXD (14 a)p () \Hac D -1 -1
(—“B(x‘:) ) .(—MBC(‘J‘Q) ) (T +apua(x) (1 + appe(x) )
Proof: Since Vi (A: U) = Lz(A: U)
pB(x;) uge(xy)
e Y. L+ap,(xi) N-taCey) | Lraractd) Vtaclx) | =
l.e Yizu;logp YIED) pp () THAD, 1+a”AC(xi) ppe(x)THac¥V ) =
up(x;) npe(x;)

(1+apa(x))pale)~Halxo) (1+auAc(xi))uAc(xi)'“Ac(xl’)> p-ts =

n .
Zi:l ullOgD < (1+a)”'A(xi) ' (1+a)'uAC(xi) N
up(x;) tpe(xi)
) -1 (E) v ., 1+apa(x;) L+ap,c(x)
i.e.logpD "2\ r ) =37 u;logp FRED) "\ ppgtact)
up(x;) pge(x;)

(a6 g () =Hal)  (14a) a0 ppe e ~Hactd)
(1+aﬂA(xi))llA(xi)_”A(xi) ) (1+ayAc(xi))yAc(xi)‘”AC("i)

#p (x;) pge(xi)
=YY" wlo 1+apaCei) 1+ap e(x;) (At+a)al)  (14a)tac®)
i=1 Uit0gp 1+aM ' 1+a”L("i) .(1+aﬂA(xi)) . (1+auAc(xi))'
up(xi) rpe(x;)
(M)HA(M) (ﬂAC(Xi))MAC(xi)
up(x) "\uge(x)
#g (x;) fge(x:)
R-1 ' .
i.e. lOgDD_liZ(T) =Y"  wlogp 1+aHAEx-l)) 1tap, Exl))
1+aM 1+aMAC Xi
up(xi) rpe(x;)

. (i) A\ Hac(xi) - -
(T A (RN e) e ) 1)

up(x;) upe(xy)
pB(x) tge(xi)
) 1+apa(x;) 1+ap ,c(x;)
ie. = | Xit1wilogp _l::(xi) : #::C(xi)
Cuplep) e )
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R
A+ @uaGe)\FAGD  (1+a) e ()| Hac (X0 -1 1) \F
(—MB(xi) ) '(—ugc(xi) ) .(1 + auA(xl-)) .(1 + a,uAc(xl-))
up(x;) uge(xy)
. 14+apg(x;) 1+ap 4c(x;)
l.e. _liz = Z?zl uilogD W lﬂ—jc(’ﬁ)
up(x;) +au3c(xi)

R
NED N Hae(x) _ 1\ \F
(—(““)"A("J)M g .(—(““)”AC("‘))”A g 1+ aps () (1 + apae(x) 1))

up(x) upe(xy)
pB(xy) pge(xy)
. __ R n 1+apy(x;) 1+ap e (x;)
L.e. — n_ logD Hi:lui (x1) . (1)
R-1 1+abA71 1+abAS%
up(x;) tge(x)

) (xp) ) (x1) _ _
((1+a)uA(xl))"A * _(_(1+a)”A_C("l))”AC * (14 apa(x) ' (1 + appe(x) 1>>

up(x) upe(xp)
pB(x;) pge(xy)
: _ R no 1+apa(x;) 1+ap e (xy)
l.e. liz = 1R logp Hi=1 u; 1+a#A("i) 1+al‘AC("i)
up(x;) tge(x)
(Ut @ua)\HAFD  ((1+a)u o) \Hac i) -1 -1
(—us(xa ) '(—uBc(Xi) ) (14 apa(x) (1 + apgpe(x)

Hence the result.

Claim 2.3 The generalized code-word length meets the inequality

1 n L+apa(x) 1+ap,e(xi) ) “li | >
SR Hl:l(((1+a)“A(Xi).uA(xi>“A("i))'((1+a)“AC("i).uAe<x,-)“AC("i) P >_

up (i) up(xp)
1 n 1+aps(xp) 1 1+ap 4c(xp) 1
R-1 logp Ii=1 PIED, g Ceprali) T\ ractd) e (e Pact<i)
up(x;) npe(x;)

a>0,R(#1)>0
if the code-word lengths [y, [, ..., [, satisfy the requirement
l

1+apa(x;) . 1+apye(x;) ' -
<<1+a)uA<xi) HAC) ¥ e “A”(xl)>D o=

1+apa(x) N 1+ape(xi)
e e = PRy

a>0,R(#1)>0
for the uniquely decipherable codes D > 1.

Proof: By Holder’s inequality we have
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Zl leYL = (Zl 1x]/) (Zl lyl )6
Forall x;,y; > 0,i = 1,2, ...,nand]—/+%1,y <1(#0),§ <0o0rd < 1(# 0),y < 0. We see the
inequality holds iff there exists a positive constant  such that x} = uy?.

Making the substitutions

1

R-1 —1:
= 1+apq (x;) )( 1+ap  c(x;) ) —L
i <(<1+a>uA(xi)“A("i) (1+a)ppe ey Pactx) b and
1
1-R
y 1+apa(x;) 1+ap 4c(xp)
i c(x; .
(1+aZAE ‘g)u (pyialxi) (1+aﬁzcg3)u3c(xi)“14c(xl)

1
R-1
1+apy(x;) 1+ap 4c(xp) i
Now, Z?ﬂ v L;(x-))( - c(x-)) '(D R_l)
(1+a)llA(x1) i (1+a)puge(x)Hacti

1\ 1-R\ 1-R
up(xy) up(x;) 1-R
1+apg(x;) 1 1+ap4c(x;) 1

+atali) up(epral) "\ L tacCx) ppe () Factd) /

Tup () “upex)

< (A + @pa () %D, (1 + @ ()40 )

1

ua(x;) eD) e (x) N, 1-R b
<(1+a# o) a0, (14 @ AT e a0 | i

1

ie( n ( 1+apy(x;) ) ( 1+ap e(x;) ) D—li)ﬁ
AN (@Al g (e raD) ) T\ (14 a)tactd) e (e tac) ) )

IA

pp(x;) pe(x;) 1R
n 1+apy(x;) 1 1+ap e (x;) 1
=1 1+ahald) “upeptalbd)” 1+a—”AC(xi) .:uBC(xi)HAC(xi)
up(x;) npe(x;)
1
1
, n 1+apy(x;) ) ( 1+apc(xy) ) _li)R_1 >
Le ( =1 ((1+a)“A(xi)-#A(xi)“A(xi) N@+aykact) e xeptacti) D -
1
pp(x) up(x;) 1-R
n 1+apa(x;) 1 1+ap e (x;) 1
EI N pqtal) Cup (el "\ Pact) ppe(ep)tactx)
”B(Xl) rge(x;)

Taking logarithm with base D throughout to the above inequality
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R-1

n
1 1+ auy(x;) 1+ apye(x;) —L
logp | | _ ~ . _ ~|.D7 | >
R—1 (1 + a).uA(xl)_‘uA(xi).uA(xl) (1 + a)ﬂAC(xl).’uAc (xl.)ﬂAC(xl)

i=1

up(x;) up(x;)

l ﬁ 1+ apa(xi) 1 1+ apye(x) 1
09p — . ~. : R —
i=1 1+ 14 pp (a0 "\ q 4 BacGD) pige (x;)HacGed
.uB(xi) ”Bc(xi)

a>0,R(#1)>0.

Hence the result.

Final Remarks

When the probability distribution P belongs to the R-norm vector space, the R-norm

information measure is defined and described. The family of generalized information

measures nhow includes this new member.

In this investigation, we have established and characterized a new measure called the

R-norm information measure, taking into account that physical systems have both

quantitative and qualitative characterizations. This metric can be utilized in source coding

where source symbols provide utility in addition to frequency of occurrence, and it can be

further generalized in numerous ways.
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