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Abstract 

For the generalized fuzzy useful R-norm Verma information measure, 

where R and a serve as two flexible parameters, this communication 

aids in the development of a coding theorem.  Additionally, we look 

at the codeword length in both scenarios and we find that one is more 

effective than the other. 
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Introduction 

By incorporating a parameter 'R' (or 'a') to provide flexibility, particularly for “useful” 

information (considering event utility) and non-additive scenarios, the R-norm information 

measure is a generalised framework in information theory that extends standard measures 

like Shannon's entropy. It finds applications in fuzzy logic, coding theory, and decision-

making by better handling uncertainty and imprecision, frequently through axiomatic 

definitions and relationships to other divergence measures. 

 Mathematical studies of the issues related to massage transmission, storage, and 

communication led to the development of information theory. It started with Shannon's [16] 

seminal work “The Mathematical Theory of Communication”. Renyi [15], Arimoto [2], 
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2 Rohit Kumar Verma & Babita Verma 

Sharma and Taneja [17], Verma [19, 20], Peerzada et al. [14], Deluca and Termini [13], and 

Kaufmann [12] all examined different generalisations of Shannon entropy. The human miracle 

and many real-world objectives are based on uncertainty and ambivalence. Contrast is found 

in the choices we make, the words we use, and the information we take in. 

 Bockee and Lubbe [5] R-norm information measure of a discrete probability 

distribution 𝑃 = (𝑃1, 𝑃2…,𝑃𝑁), 𝑝𝑖 ≥ 0, 𝑖 = 1,2… , 𝑛. Where ∑ 𝑝𝑖 = 1
𝑛
𝑖=1  and 

                                                        𝑅∗ = {𝑅: 𝑅 > 0,𝑅 ≠ 1}   

given by                                     𝐻𝑅(𝑃) =
𝑅

𝑅−1
[1 − (∑ 𝑝𝑖

𝑅𝑛
𝑖=1 )

1

𝑅],                                              (1.1) 

the R-norm information measure (1.1) is a real function ∆𝑛→ 𝑅
+, defined on ∆𝑛 where 𝑛 ≥ 2 

and 𝑅+ is the set of positive real numbers. This measure is different from Shannon’s entropy 

[16], Renyi [15] and Havrda and Charvat [10] and Daroczy [7]. 

The most interesting property of this measure is that when 𝑅 → 1, R-norm information 

measure (1.1) approaches to Shannon’s entropy and in case 𝑅 → ∞, 𝐻𝑅(𝑃) → (1 −max𝑝𝑖), 𝑖 =

1,2… , 𝑛. 

The measure (1.1) has been generalized by Hooda and Anant [2] as 

                         𝐻𝑅
𝛽(𝑃) =

𝑅

𝑅+𝛽−2
[1 − (∑ 𝑝

𝑖

𝑅

2−𝛽𝑛
𝑖=1 )

2−𝛽

𝑅

], 0 < 𝛽 ≤ 1, 𝑅(> 0) ≠ 1                   (1.2)    

(1.1) has been called as the generalized R-norm entropy if degree 𝛽 which reduces to (1,2) 

when 𝛽 = 1. In case 𝑅 = 1, (1.2) reduces to   

                        𝐻1
𝛽(𝑃) =

1

𝛽−1
[1 − (∑ 𝑝

𝑖

1

2−𝛽𝑛
𝑖=1 )

2−𝛽

], 0 < 𝛽 ≤ 1.                                            (1.3) 

Setting 𝑟 =
1

2−𝛽
 in (1.3), we get  

                        𝐻𝑟(𝑃) =
𝑟

𝑟−1
[1 − (∑ 𝑝𝑖

𝑟𝑛
𝑖=1 )

1

𝑟], 
1

2
< 𝑟 ≤ 1.                                                        (1.4) 

which is a measure mentioned by Arimoto [2] as an example of a generalized class of 

information measure.  

As an illustration of a broad measure of distribution, Boekee and Lubbe [5] recognised and 

examined the R-norm information measure put forth by Arimoto [2]. Hooda and Sharma [8] 

suggested modifications to the fuzzy information rule in line with the R standard measures 

suggested by Hooda and Ram [9], which are comparable to the measurements of Boekee and 

Lubbe [5]. Additionally, expanded on the findings of measurements to gauge R-regulatory 

data. The measurements provided are measured by Kumar and Choudhary [18] using the 

following model for a random experiment S, 

𝑆𝑁 = [𝐸; 𝑃;𝑈] 

Where 𝐸 = (𝐸1, 𝐸2, … , 𝐸𝑁) is a finite system of events happening with respective probabilities 

𝑃 = (𝑃1, 𝑃2…,𝑃𝑁), 𝑝𝑖 ≥ 0 and ∑𝑝𝑖 = 1 and credited with utilities 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑁), 𝑢𝑖 ≥

0, 𝑖 = 1,2, … ,𝑁. Denote the model by 𝐸, where 
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                                                           𝐸 = (
𝐸1 𝐸2…𝐸𝑁
𝑝1 𝑝2…𝑝𝑁
𝑢1 𝑢2…𝑢𝑁

).                                                      (1.5)                                     

We call (1.5) a Utility Information Scheme (UIS) proposed a measure of information called 

‘useful information’ for this scheme, given by  

                                                        𝐻(𝑈;𝑃) = −∑𝑢𝑖𝑝𝑖 ln 𝑝𝑖, 

where 𝐻(𝑈; 𝑃) reduces to Shannon’s [9] entropy when the utility aspect of the scheme is 

ignored i.e. when 𝑢𝑖 = 1for each 𝑖. Throughout the paper, Σ will stand for 𝑖 = 1,2… ,𝑁. 

Information is mostly used to eliminate ambiguity and uncertainty. The amount of probability 

uncertainty that is overlooked during the experiment is actually used to restrict the data that 

is presented; this measure of uncertainty is referred to as a measure of information up to the 

degree of uncertainty. It is a gauge of ambiguity and uncertainty. 

Zadeh [22] created the theory of fuzzy sets (FS), which is a condensed version of conventional 

set theory for representing ambiguous and indeterminate occurrences. This idea is a useful 

tool for understanding how the human system behaves, when judgements, perceptions, and 

emotions are crucial. Ambiguity in a restricted set of concepts is defined as the degree of 

ambiguity that reveals the extent of the ambiguity or issue within us, determining whether or 

not an element is part of the set. The idea of exponential resonance was expanded to include 

fuzzy phenomena by Bhandari and Pal [4]. Ambiguous metrics due to information 

uncertainty were examined by Kapur [11]. 

Lotfi A. Zadeh's fuzzy set theory [22] has been widely applied in numerous scientific and 

technological fields. Fuzzy measures have already been applied to computer science, 

engineering, fuzzy traffic control, fuzzy aviation control, medicine, and decision making, 

among other fields. For example, the publications Aczel [3], Kapur [11], Verma [18, 21], Renyi 

[15], and Bockee and Van Der Lubbe [5] provide the lower bound for the mean code-word 

length of a uniquely decipherable code in terms of Shannon's [16] entropy. Kapur [11] has 

demonstrated connections between coding and probability entropy. Therefore, in instances 

when probabilistic measures of entropy are ineffective, the concept of fuzziness might be 

investigated rather than using probability. 

Given a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, a fuzzy subset of it is defined as follows: 

                                           𝐴 = {(𝑥𝑖, 𝜇𝐴(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋, 𝜇𝐴(𝑥𝑖) ∈ [0,1]}  

where 𝜇𝐴(𝑥𝑖) ∶ 𝑋 → [0,1] is a membership function that provides the degree to which element 

𝑥𝑖 belongs to the set 𝐴. It is defined as follows: 

𝜇𝐴(𝑥𝑖) = {

0 𝑖𝑓 𝑥𝑖 ∉ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦,
1 𝑖𝑓 𝑥𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦,

                      0.5 𝑖𝑓 𝑥𝑖 ∈ 𝐴 𝑜𝑟 𝑥𝑖 ∉ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦.
 

Some fuzzy set concepts that we will require for our discussion, according to Zadeh [] 

Containment If 𝐴 ⊂ 𝐵 ⟺ 𝜇𝐴(𝑥𝑖) ≤ 𝜇𝐵(𝑥𝑖) ∀𝑥𝑖 ∈ 𝑋 

Equality If 𝐴 = 𝐵 ⟺ 𝜇𝐴(𝑥𝑖) = 𝜇𝐵(𝑥𝑖) ∀𝑥𝑖 ∈ 𝑋   

Complement If 𝐴𝑐 is complement of 𝐴 ⟺ 𝜇𝐴𝑐(𝑥𝑖) = 1 − 𝜇𝐴(𝑥𝑖) ∀𝑥𝑖 ∈ 𝑋 
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Union If 𝐴 ∪ 𝐵 is union of 𝐴 and 𝐵 ⟺ 𝜇𝐴∪𝐵(𝑥𝑖) = 𝑀𝑎𝑥 {𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)} ∀𝑥𝑖 ∈ 𝑋 

Intersection If 𝐴 ∩ 𝐵 is union of 𝐴 and 𝐵 ⟺ 𝜇𝐴∩𝐵(𝑥𝑖) = 𝑀𝑖𝑛 {𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)} ∀𝑥𝑖 ∈ 𝑋 

Product If 𝐴𝐵 is product of 𝐴 and 𝐵 ⟺ 𝜇𝐴𝐵(𝑥𝑖) = 𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖) ∀𝑥𝑖 ∈ 𝑋 

Sum If 𝐴 + 𝐵 is sum of 𝐴 and 𝐵 ⟺ 𝜇𝐴+𝐵(𝑥𝑖) = 𝜇𝐴(𝑥𝑖) + 𝜇𝐵(𝑥𝑖) − 𝜇𝐴(𝑥𝑖)𝜇𝐵(𝑥𝑖) ∀𝑥𝑖 ∈ 𝑋 

2. New Results 

Claim 2.1 The generalized word length 𝐿𝑅(𝐴:𝑈) meets the inequality if the code word lengths 

𝑙1, 𝑙2, … , 𝑙𝑛 satisfy ∑ 𝑢𝑖𝑙𝑜𝑔𝐷 (
(1+𝑎𝜇𝐴(𝑥𝑖))(𝜇𝐴(𝑥𝑖))

−1

(1+𝑎)𝜇𝐴(𝑥𝑖)
) . 𝐷

−𝑙𝑖1(
𝑅−1

𝑅
)
≤ 1𝑛

𝑖=1  for any integers > 1 

𝐿𝑅(𝐴: 𝑈) = 𝑉𝑅(𝐴:𝑈), 𝑎 > 0, 𝑅(≠ 1) > 0. Where equality, for Verma 𝑖. 𝑒. hybrid Burg measure,  

is valid if 

−𝑙𝑖1 =
𝑅

1−𝑅
𝑙𝑜𝑔𝐷 (∏ 𝑢𝑖 ((

1+𝑎𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)+𝑎𝜇𝐴(𝑥𝑖)
)
𝜇𝐵(𝑥𝑖)

.𝑛
𝑖=1 (

1+𝑎𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)+𝑎𝜇𝐴𝑐(𝑥𝑖)
)
𝜇𝐵𝑐(𝑥𝑖)

.             

                                                                          
(1+𝑎)𝜇𝐴(𝑥𝑖).𝜇𝐴(𝑥𝑖)

1+𝑎𝜇𝐴(𝑥𝑖)
.
(1+𝑎)

𝜇
𝐴𝑐
(𝑥𝑖).𝜇𝐴𝑐(𝑥𝑖)

1+𝑎𝜇𝐴𝑐(𝑥𝑖)
) 

Proof: Since               𝐿𝑅(𝐴:𝑈) = 𝑉𝑅(𝐴:𝑈)  

𝑖. 𝑒. ∑ 𝑢𝑖𝑙𝑜𝑔𝐷 ((
(1+𝑎𝜇𝐴(𝑥𝑖))(𝜇𝐴(𝑥𝑖))

−1

(1+𝑎)𝜇𝐴(𝑥𝑖)
) . 𝐷

−𝑙𝑖1(
𝑅−1

𝑅
)
) =𝑛

𝑖=1  

                                                  ∑ 𝑢𝑖𝑙𝑜𝑔𝐷 ((
1+𝑎𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)+𝑎𝜇𝐴(𝑥𝑖)
)
𝜇𝐵(𝑥𝑖)

+ (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)+𝑎𝜇𝐴𝑐(𝑥𝑖)
)
𝜇𝐵𝑐(𝑥𝑖)

)𝑛
𝑖=1    

𝑖. 𝑒. 𝑙𝑜𝑔𝐷𝐷
−𝑙𝑖1

𝑅−1

𝑅 = ∑ 𝑢𝑖𝑙𝑜𝑔𝐷 (
(1+𝑎𝜇𝐴(𝑥𝑖))

𝜇𝐵(𝑥𝑖)

(𝜇𝐵(𝑥𝑖)+𝑎𝜇𝐴(𝑥𝑖))
𝜇𝐵(𝑥𝑖)

.
(1+𝑎𝜇𝐴𝑐(𝑥𝑖))

𝜇
𝐵𝑐
(𝑥𝑖)

(𝜇𝐵𝑐(𝑥𝑖)+𝑎𝜇𝐴𝑐(𝑥𝑖))
𝜇𝐵𝑐(𝑥𝑖)

𝑛
𝑖=1 . 

                                                              
(1+𝑎)𝜇𝐴(𝑥𝑖)

(1+𝑎𝜇𝐴(𝑥𝑖))(𝜇𝐴(𝑥𝑖))
−1 .

(1+𝑎)
𝜇
𝐴𝑐
(𝑥𝑖)

(1+𝑎𝜇𝐴𝑐(𝑥𝑖))(𝜇𝐴𝑐(𝑥𝑖))
−1)  

𝑖. 𝑒. −𝑙𝑖1 = (∑ 𝑢𝑖𝑙𝑜𝑔𝐷 ((
1+𝑎𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)+𝑎𝜇𝐴(𝑥𝑖)
)
𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)+𝑎𝜇𝐴𝑐(𝑥𝑖)
)
𝜇𝐵𝑐(𝑥𝑖)𝑛

𝑖=1 . 

                                                             
(1+𝑎)𝜇𝐴(𝑥𝑖)

(1+𝑎𝜇𝐴(𝑥𝑖))(𝜇𝐴(𝑥𝑖))
−1 .

(1+𝑎)
𝜇
𝐴𝑐
(𝑥𝑖)

(1+𝑎𝜇𝐴𝑐(𝑥𝑖))(𝜇𝐴𝑐(𝑥𝑖))
−1)

𝑅

𝑅−1

   

𝑖. 𝑒.         = 𝑙𝑜𝑔𝐷 (∏ 𝑢𝑖 ((
1+𝑎𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)+𝑎𝜇𝐴(𝑥𝑖)
)
𝜇𝐵(𝑥𝑖)

.𝑛
𝑖=1 (

1+𝑎𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)+𝑎𝜇𝐴𝑐(𝑥𝑖)
)
𝜇𝐵𝑐(𝑥𝑖)

. 

                                                              
(1+𝑎)𝜇𝐴(𝑥𝑖)

(1+𝑎𝜇𝐴(𝑥𝑖))(𝜇𝐴(𝑥𝑖))
−1 .

(1+𝑎)
𝜇
𝐴𝑐
(𝑥𝑖)

(1+𝑎𝜇𝐴𝑐(𝑥𝑖))(𝜇𝐴𝑐(𝑥𝑖))
−1))

𝑅

𝑅−1

  

              =
𝑅

𝑅−1
𝑙𝑜𝑔𝐷 (∏ 𝑢𝑖 ((

1+𝑎𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)+𝑎𝜇𝐴(𝑥𝑖)
)
𝜇𝐵(𝑥𝑖)

.𝑛
𝑖=1 (

1+𝑎𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)+𝑎𝜇𝐴𝑐(𝑥𝑖)
)
𝜇𝐵𝑐(𝑥𝑖)

.             

                                                                          
(1+𝑎)𝜇𝐴(𝑥𝑖).𝜇𝐴(𝑥𝑖)

1+𝑎𝜇𝐴(𝑥𝑖)
.
(1+𝑎)

𝜇
𝐴𝑐
(𝑥𝑖).𝜇𝐴𝑐(𝑥𝑖)

1+𝑎𝜇𝐴𝑐(𝑥𝑖)
)  
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Hence the result.  

Claim 2.2 The generalized word length 𝐿𝑅(𝐴:𝑈) meets the inequality if the code-word lengths 

𝑙1, 𝑙2, … , 𝑙𝑛 satisfy ∑ 𝑢𝑖 𝑙𝑜𝑔𝐷 (
(1+𝑎𝜇𝐴(𝑥𝑖))𝜇𝐴(𝑥𝑖)

−𝜇𝐴(𝑥𝑖)

(1+𝑎)𝜇𝐴(𝑥𝑖)
.
(1+𝑎𝜇𝐴𝑐(𝑥𝑖))𝜇𝐴𝑐(𝑥𝑖)

−𝜇
𝐴𝑐
(𝑥𝑖)

(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)
) . 𝐷

−𝑙𝑖2(
𝑅−1

𝑅
)𝑛

𝑖=1 ≤ 1 

for any integers > 1 𝐿𝑅(𝐴:𝑈) = 𝑉𝑅(𝐴: 𝑈), 𝑎 > 0, 𝑅(≠ 1) > 0. Where equality, for modified 

Verma 𝑖. 𝑒. hybrid Shannon measure, is valid if 

−𝑙𝑖2 =
𝑅

𝑅−1
𝑙𝑜𝑔𝐷(∏ 𝑢𝑖 ((

1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

.𝑛
𝑖=1   

                      (
(1+𝑎)𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)
𝜇𝐴(𝑥𝑖)

. (
(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)
𝜇𝐴𝑐(𝑥𝑖)

. (1 + 𝑎𝜇𝐴(𝑥𝑖))
−1
. (1 + 𝑎𝜇𝐴𝑐(𝑥𝑖))

−1
)).  

Proof: Since 𝑉𝑅(𝐴:𝑈) = 𝐿𝑅(𝐴:𝑈)  

𝑖. 𝑒. ∑ 𝑢𝑖
𝑛
𝑖=1 𝑙𝑜𝑔𝐷((

1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
−𝜇𝐴(𝑥𝑖). (

1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
−𝜇𝐴𝑐(𝑥𝑖)) =  

            ∑ 𝑢𝑖𝑙𝑜𝑔𝐷 ((
(1+𝑎𝜇𝐴(𝑥𝑖))𝜇𝐴(𝑥𝑖)

−𝜇𝐴(𝑥𝑖)

(1+𝑎)𝜇𝐴(𝑥𝑖)
.
(1+𝑎𝜇𝐴𝑐(𝑥𝑖))𝜇𝐴𝑐(𝑥𝑖)

−𝜇
𝐴𝑐
(𝑥𝑖)

(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)
) . 𝐷

−𝑙𝑖2(
𝑅−1

𝑅
)
)𝑛

𝑖=1   

𝑖. 𝑒. 𝑙𝑜𝑔𝐷𝐷
−𝑙𝑖2(

𝑅−1

𝑅
)
= ∑ 𝑢𝑖𝑙𝑜𝑔𝐷((

1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

.𝑛
𝑖=1     

                                            (
(1+𝑎)𝜇𝐴(𝑥𝑖)𝜇𝐵(𝑥𝑖)

−𝜇𝐴(𝑥𝑖)

(1+𝑎𝜇𝐴(𝑥𝑖))𝜇𝐴(𝑥𝑖)
−𝜇𝐴(𝑥𝑖)

.
(1+𝑎)

𝜇
𝐴𝑐
(𝑥𝑖)𝜇𝐵𝑐(𝑥𝑖)

−𝜇
𝐴𝑐
(𝑥𝑖)

(1+𝑎𝜇𝐴𝑐(𝑥𝑖))𝜇𝐴𝑐(𝑥𝑖)
−𝜇𝐴𝑐(𝑥𝑖)

))  

                          = ∑ 𝑢𝑖𝑙𝑜𝑔𝐷((
1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

.𝑛
𝑖=1

(1+𝑎)𝜇𝐴(𝑥𝑖)

(1+𝑎𝜇𝐴(𝑥𝑖))
.
(1+𝑎)

𝜇
𝐴𝑐
(𝑥𝑖)

(1+𝑎𝜇𝐴𝑐(𝑥𝑖))
.  

                                                            (
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)
𝜇𝐴(𝑥𝑖)

. (
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)
𝜇𝐴𝑐(𝑥𝑖)

)  

𝑖. 𝑒. 𝑙𝑜𝑔𝐷𝐷
−𝑙𝑖2(

𝑅−1

𝑅
)
= ∑ 𝑢𝑖𝑙𝑜𝑔𝐷((

1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

.𝑛
𝑖=1  

                   (
(1+𝑎)𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)
𝜇𝐴(𝑥𝑖)

. (
(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)
𝜇𝐴𝑐(𝑥𝑖)

. (1 + 𝑎𝜇𝐴(𝑥𝑖))
−1
. (1 + 𝑎𝜇𝐴𝑐(𝑥𝑖))

−1
)  

𝑖. 𝑒.                                  = (∑ 𝑢𝑖𝑙𝑜𝑔𝐷((
1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

.𝑛
𝑖=1   
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             (
(1+𝑎)𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)
𝜇𝐴(𝑥𝑖)

. (
(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)
𝜇𝐴𝑐(𝑥𝑖)

. (1 + 𝑎𝜇𝐴(𝑥𝑖))
−1
. (1 + 𝑎𝜇𝐴𝑐(𝑥𝑖))

−1
))

𝑅

𝑅−1

  

𝑖. 𝑒. −𝑙𝑖2 = (∑ 𝑢𝑖𝑙𝑜𝑔𝐷 ((
1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

.𝑛
𝑖=1  

            (
(1+𝑎)𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)
𝜇𝐴(𝑥𝑖)

. (
(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)
𝜇𝐴𝑐(𝑥𝑖)

. (1 + 𝑎𝜇𝐴(𝑥𝑖))
−1
. (1 + 𝑎𝜇𝐴𝑐(𝑥𝑖))

−1
))

𝑅

𝑅−1

  

𝑖. 𝑒.                          =
𝑅

𝑅−1
𝑙𝑜𝑔𝐷(∏ 𝑢𝑖 ((

1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

.𝑛
𝑖=1  

   (
(1+𝑎)𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)
𝜇𝐴(𝑥𝑖)

. (
(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)
𝜇𝐴𝑐(𝑥𝑖)

. (1 + 𝑎𝜇𝐴(𝑥𝑖))
−1
. (1 + 𝑎𝜇𝐴𝑐(𝑥𝑖))

−1
))  

𝑖. 𝑒. 𝑙𝑖2 =
𝑅

1−𝑅
𝑙𝑜𝑔𝐷(∏ 𝑢𝑖 ((

1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵𝑐(𝑥𝑖)

.𝑛
𝑖=1   

  (
(1+𝑎)𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)
𝜇𝐴(𝑥𝑖)

. (
(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)
𝜇𝐴𝑐(𝑥𝑖)

. (1 + 𝑎𝜇𝐴(𝑥𝑖))
−1
. (1 + 𝑎𝜇𝐴𝑐(𝑥𝑖))

−1
))                                                                                                                                     

Hence the result.   

Claim 2.3 The generalized code-word length meets the inequality 

              

               
1

𝑅−1
𝑙𝑜𝑔𝐷∏ ((

1+𝑎𝜇𝐴(𝑥𝑖)

(1+𝑎)𝜇𝐴(𝑥𝑖).𝜇𝐴(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

) . (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

(1+𝑎)𝜇𝐴𝑐(𝑥𝑖).𝜇𝐴𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

) . 𝐷−𝑙𝑖) ≥𝑛
𝑖=1   

         
1

𝑅−1
𝑙𝑜𝑔𝐷∏

(

 
 
((

1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

)

)

 
 𝑛

𝑖=1 , 

                                                                                                                    𝑎 > 0, 𝑅(≠ 1) > 0    

if the code-word lengths 𝑙1, 𝑙2, … , 𝑙𝑛 satisfy the requirement  

                 (
1+𝑎𝜇𝐴(𝑥𝑖)

(1+𝑎)𝜇𝐴(𝑥𝑖)
𝜇𝐴(𝑥𝑖) +

1+𝑎𝜇𝐴𝑐(𝑥𝑖)

(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖))𝐷

−
𝑙𝑖
𝑅−1 ≥  

                                                            
1+𝑎𝜇𝐴(𝑥𝑖)

(1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
).𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
+

1+𝑎𝜇𝐴𝑐(𝑥𝑖)

(1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
).𝜇𝐵𝑐(𝑥𝑖)

𝜇𝐴𝑐(𝑥𝑖)
, 

                                                                                                                    𝑎 > 0, 𝑅(≠ 1) > 0 

for the uniquely decipherable codes 𝐷 > 1. 

Proof: By Holder’s inequality we have 
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                                               ∑ 𝑥𝑖𝑦𝑖 ≥ (∑ 𝑥𝑖
𝛾𝑛

𝑖=1 )
1

𝛾(∑ 𝑦𝑖
𝛿𝑛

𝑖=1 )
1

𝛿𝑛
𝑖=1   

For all 𝑥𝑖 , 𝑦𝑖 > 0, 𝑖 = 1,2, … , 𝑛 and 
1

𝛾
+
1

𝛿
1, 𝛾 < 1(≠ 0), 𝛿 < 0 or 𝛿 < 1(≠ 0), 𝛾 < 0. We see the 

inequality holds iff there exists a positive constant 𝜇 such that 𝑥𝑖
𝛾
= 𝜇𝑦𝑖

𝛿 . 

Making the substitutions 

𝑥𝑖 = ((
1+𝑎𝜇𝐴(𝑥𝑖)

(1+𝑎)𝜇𝐴(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

) (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

))

1

𝑅−1

𝐷
−𝑙𝑖
𝑅−1                and 

                                        𝑦𝑖 = ((
1+𝑎𝜇𝐴(𝑥𝑖)

(1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
)(

1+𝑎𝜇𝐴𝑐(𝑥𝑖)

(1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)𝜇𝐵𝑐(𝑥𝑖)

𝜇𝐴𝑐(𝑥𝑖)
))

1

1−𝑅

 

Now, (∑ (((
1+𝑎𝜇𝐴(𝑥𝑖)

(1+𝑎)𝜇𝐴(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

)(
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

(1+𝑎)𝜇𝐴𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

))

1

𝑅−1

)

𝑅−1

. (𝐷
𝑙𝑖
𝑅−1)

𝑅−1
𝑛
𝑖=1 )

1

𝑅−1

. 

(

 
 
∑

(

 
 
((

1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

)

1

1−𝑅

)

 
 

1−𝑅

𝑛
𝑖=1

)

 
 

1

1−𝑅

  

                      ≤ ((1 + 𝑎)𝜇𝐴(𝑥𝑖)
𝜇𝐴(𝑥𝑖). (1 + 𝑎)𝜇𝐴(𝑥𝑖)

𝜇𝐴(𝑥𝑖))

1

1−𝑅
.  

                                    ((1 + 𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
)𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖). (1 + 𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)
)𝜇𝐵𝑐(𝑥𝑖)

𝜇𝐴𝑐(𝑥𝑖))

1

1−𝑅

𝐷
−𝑙𝑖
𝑅−1  

𝑖. 𝑒. (∑ (
1+𝑎𝜇𝐴(𝑥𝑖)

(1+𝑎)𝜇𝐴(𝑥𝑖).𝜇𝐴(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

) . (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

(1+𝑎)𝜇𝐴𝑐(𝑥𝑖).𝜇𝐴𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

) . 𝐷−𝑙𝑖𝑛
𝑖=1 )

1

𝑅−1
. 

                               (∑ ((
1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

)𝑛
𝑖=1 )

1

1−𝑅

≤

1    

𝑖. 𝑒. (∑ (
1+𝑎𝜇𝐴(𝑥𝑖)

(1+𝑎)𝜇𝐴(𝑥𝑖).𝜇𝐴(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

) . (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

(1+𝑎)𝜇𝐴𝑐(𝑥𝑖).𝜇𝐴𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

) . 𝐷−𝑙𝑖𝑛
𝑖=1 )

1

𝑅−1
≥ 

                                    

(∑ ((
1+𝑎𝜇𝐴(𝑥𝑖)

1+𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

. (
1+𝑎𝜇𝐴𝑐(𝑥𝑖)

1+𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

)𝑛
𝑖=1 )

1

1−𝑅

  

Taking logarithm with base 𝐷 throughout to the above inequality 
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1

𝑅 − 1
𝑙𝑜𝑔𝐷∏((

1 + 𝑎𝜇𝐴(𝑥𝑖)

(1 + 𝑎)𝜇𝐴(𝑥𝑖). 𝜇𝐴(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

) . (
1 + 𝑎𝜇𝐴𝑐(𝑥𝑖)

(1 + 𝑎)𝜇𝐴𝑐(𝑥𝑖). 𝜇𝐴𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

) . 𝐷−𝑙𝑖) ≥

𝑛

𝑖=1

 

1

𝑅 − 1
𝑙𝑜𝑔𝐷∏

(

 
 
((
1 + 𝑎𝜇𝐴(𝑥𝑖)

1 + 𝑎
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

. (
1 + 𝑎𝜇𝐴𝑐(𝑥𝑖)

1 + 𝑎
𝜇𝐴𝑐(𝑥𝑖)

𝜇𝐵𝑐(𝑥𝑖)

)

𝜇𝐵(𝑥𝑖)

.
1

𝜇𝐵𝑐(𝑥𝑖)
𝜇𝐴𝑐(𝑥𝑖)

)

)

 
 

𝑛

𝑖=1

 

𝑎 > 0, 𝑅(≠ 1) > 0.  

Hence the result.  

Final Remarks 

When the probability distribution 𝑃 belongs to the R-norm vector space, the R-norm 

information measure is defined and described. The family of generalized information 

measures now includes this new member.  

In this investigation, we have established and characterized a new measure called the 

R-norm information measure, taking into account that physical systems have both 

quantitative and qualitative characterizations. This metric can be utilized in source coding 

where source symbols provide utility in addition to frequency of occurrence, and it can be 

further generalized in numerous ways. 
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