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ABSTRACT

In this paper we define the Riesz sequence spaces "*(u, p) and
determine its Kothe-Toeplitz duals. We also establish necessary and
sufficient conditions for a matrix A to map ¥ 2)to = and ¥ (w.p) to
¢, where k= is the space of all bounded sequences and c is the space of

all convergent sequences.
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1. INTRODUCTION

Let @ be the space of all sequences real or complex and|l_, C and ¢, are respectively the space of

all bounded sequences, convergent sequences and null sequences.

The main purpose of this paper is to define and investigate the Riesz sequence space r#{u. ) and
prove that it is a complete paranormed space. Later we determine the B-dual (Kothe-Toeplitz dual)
of r9(u,») and characterize the class of matrices (%(u, 1), .) and (r%(u, ), ).

If (g,)is a positive sequence of real numbers then for # = (.} with inf . = 0. we define the Riesz
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where E, denotes a sum over the ranges 2" = k < 2™* and

sequence space r¥{u. g} by

=

riu,p) = ]x =(x e m:z

r=>0

Qrr=Tr Gp = QurHzmey v gy
With regard to notation, the dual space of =%{u. ), that is, the space of all continuous linear

functional on r¥(u. p) will be denoted by [r#{u. p}]1*.
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In their paper Sheikh and Ganie [10] defined »%(u.®) in a different norm with the help of [2, 3, 4]
and studied completeness and consider some matrix mapping. If (u;) =e= (1,11, ..... J then the
sequence space r%{u, p) of [10] reduces to »7(p]) which introduced by Atlay and Basar [1].
Throughout the paper the following well known inequality (see[7] or [8]) will be frequently used. For
any integer £ =1 and two complex numbers a and b we have
labl < E(lal"E~" + |b]7) (1)

where p = 1 and §+% =1.

To begin with, we show that the space »%({u. p] is a paranorm space paranormed by

o0 = (3 " @)

provided H = sup, p, < = and M = max {1, H].

1
Tor Iy g Qi

Clearly
g@) =0and g(x) = gl—x), where 8 = (0,0,0, e e cevee e enea )
Since p = M, for any x,y € v9{u. p) we have
= Py
1 .
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and since M = 1, we see by Minkowski’s inequality that g is subadditive.
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Finally we have to check the continuity of scalar multiplication. From the definition of r%(u. )

we have inf p. = 0. So we may assume that inf g =g = 0. Now for any complex

:

Awith llAll = 1, we have

glix) = i ( Q{TZ ug gpdrg

r=0
Er
= Pl g(x)

M

< Il g() = 0as 1 — 0.

It is quite routine to show that »%(w. ) is a metric space with the metric d(x. v} = g(x — ¥) provided
that x.y € »%(u.p). where g is defined by (2); And using a similar method to that in [5] one can
show that ##(u. p} is complete under the metric mentioned above.

2. Duals

If ¥ is a sequence space, then X* will denote the generalized Kothe-Toeplitz (8 — dual)} of X.
XF = x+ ={a = (a;): T, a;x; converge for all x € X}.

Now we are giving the following theorem by which the generalized Kothe-Toeplitz dual will be
determined.

Theorem 2.1. If 1 < p, < sup,p. < and p 4+t =1, r=012.... .., then

- .
[+9(u, p)1F = ]a = {QR]:Z |Q:r mjx (uzlqitey)| E~% < = for some integer E = 1
r=>0

Proof. Letl < p < sup, b, <> and pri+¢ =1, r=012......
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Define

= MO 1 1 fr oot y
ut)y =qa = (a1 X7, |Q:r . (uztgsr ta) | E~r = « for some integer E = 1 (3)

We want to show that [#%(u, p)1# = u(t).
Letx er¥(u,p) and a E.M (t}. Then using inequality (1), we get

e —ZZ@ i) (gxy)

k=1

=

=y Mt ) Z(uhqhxh]

o

=
I

5

r=0

F( I?:'r’ m:r {uilqilah‘ E'_r'r +Z ‘_Z{unqnxnj

=0

Q:rm.;,,. _1 _la :I_Z{uhqhxhj

.:: oo
which implies that the series L=, azx is convergent. Therefore,
a € [r9(u, p)]? , thatis, [+%(u, £)1% = u(t)
Conversely, suppose that Xi—; a;x; is convergent for all x e #%{u, ), but & & u(t). Then

tr
Z |0 " Cuptapta)| B =
for every integer E = 1.
So, we can define a sequence 0 = n{0) < n(1) <n(2) < - ..........,, such that
=012 .uiurone , we have
[ J— max — — —f
My =5 |'?-* (ugtaita)| G+ fer =1,

Now we define a sequence (see [5], [6], [9]) x = (xy)} in the following way:
mox _ _
Ty = Q@ |Q - {“Rlﬁ'kl

fornly) = r = nly+1) —1,].-':EI 1.2, and x,=0for k= N(r),

sgnay( (v + 2)77M;

where N() is such that ay, = o (ui*qi*a;), the maximum is taken with respect to k

in[27,2mt).

Therefore,

arlFF1_y niy+1-1
maxr . . _ tr—1 _ _
QX = Z aye) @ (@, Gilgitad)| (v +27TME
r=270F) r=n¥)
nly+11-1
-t —ty pa—1
= i) Qo 1@ ﬂwir)| +2) M,
r=n(y]
nly+1l-1
- - rT -
=R+ ) lerawnl” G2t
r=n(y¥]
nly+1-1
I
_ _ Toax _ _ T _ ]
=Mty +2)7" Z |'§?:r » (uitgite)| (v +2)Fr
r=n(r)

=M *r+2)t
=(r+2)™
diverges. Moreover
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MErtr iy e nPrie <tr+2)

That is, x € ¥ {u. p), which is a contradiction.

Hence a € u(t), thatis, u(t) = [»%(u, p)]¥. Then combining the above two results we get

[r9(u, p)1% = ule).

Theorem 2.2. Let 1 < p, < sup, p- = = Then [»9(w. p)]* is isomorphic to u(£) which is defined by (3).
Proof. It is easy to check that each = & +%{u,p) can be written in the form

x:Z xpe, where g, = (0,0, ......0,1, 0, oo )
=1
and the 1 appears at the k-th place. Then for any f € [»%{u. p)]* we have
f{-‘f]=zxaf{9ﬂ=zxaﬂa )
k=1 k=1

where f(e.) = a;. By Theorem 2.1, the convergence of Zi-;xia; for every x in r%{wp)implies
that a € u(t).
If x € r%(u.p) and if we take a € u(t). then by theorem 2.1, Xi_; xza; converges and clearly
defines a linear functional on ##{u. ). Using the same kind of argument as in theorem 2.1, it is easy
to check that

=

Z_r;; o = Zb: a.l =E (Z |Q.r (urgrtay) ty

k=1 =1

Etr 4 1) g(x)

when g(x) =1, where g(x) is defined by (2). Hence Ei-; xia; defines an element of [+7(w. p)]".
Furthermore, it is easy to see that representation (4) is unique. Hence we can define a mapping

T: 9w, p)]* — ule).

By T(f) = (ay. @z, 0 v wnn ., Wwhere @y appears in representation (4). It is evident that T is linear
and bijective. Hence [r%{u.p)]"is isomorphic to u(t).

3. Matrix Transformations

Let 4 = (a,;) be an infinite matrix of complex numbers (2;:)nx=1z........ and U.¥ be two subsets
of the spaces of complex sequences. We say that the matrix A defines a matrix transformation from
Uinto VV and denote it by A € (U, V)., if for every sequence x = (x;) € U the sequence Alx) = A,(x) is
in ¥, where
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=

Aplx) = Z np Xk (3)

k=1
provided the series on the right is convergent.
In this section we characterize the class of matrices (r%(u, £).1_) and (+%(u.p).c), where
[ and care respectively the Banach spaces of all bounded and convergent sequence x = (x)

endowed with the norm llxll = sup; [x,|.
Theorem 3.1. let 1< p <sup, p =< Then 4 e (r%u.p).I_) if and only if there exists an

integer E = 1 such that
r"F
U(E) —MZ |0 ™ (uitqitay)| E <o

and prt + t;l = PR 1 e
Proof. Sufficiency. Suppose there exists an integer E = 1 such that U(E) = . Then by inequality
(1), we have

= ==
Zﬂnaxa= E E i Xg
=1 r=0 r
=
— -1 -1
= E E Up™ Qi Ong Updy Xg
max _1 E

£ ol h u'i"‘h.:]

max
er r ': Ok ﬂ'i"n:]_z UpQpXy

N mox . g, _ e _ 1
=E (Z |':E|:T ¥ {ukl Ox lﬂnﬂ E-tr + Z ‘Q_Z UL X,
r=0 & r

r=0

Br

"'u
/
< 0o,

Therefore, 4 & (#%(u,p). 1_).

Necessity. Suppose that 4 € (r%(u,p). 1], but

ty
E-fr=um

maox - -
Q. (ui" g k)

for every integer E =1.Then Xj_; an; x; converges for every nand x € v (u, p).
whence
(Bnrdni=12 e E v (u, p)]7
for every n.
By theorem 2.1, it follows that each 4,, defined by
Aplx) = Z G g
k=1
is an element of [r%(u, p)]*. Since +%(u.7) is complete and since S?iplﬂﬂ{le =< o2 on ¥ {u.p), by the
uniform boundedness principle there exists a number L independent of n and x, and a number
& = 1, such that
lAp(x)| = L (6)
For every nand x € 5[8.8], where 5 [8,4] is the closed sphere in »%{u. ) with center at the origin #
and radius &.
Now choose an integer & = 1.such that
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GEM = L
Since

sup max .oy 1
n Z|'?:f » o CUET g0
r=0
there exists an integer m; = 1 such that
Mg
maox - -
R =Z |Q:r . (uE" gk ang)
=0

Define a sequence x = {x;) as follows:
= 0if k =2+t

b
G = oo,

t‘r
Gt > 1, 7

tr—1

— M/p -1 =t /D
Xy = @ 67 sgn ﬂ'n:.r[rjl'?:' B R™2 6Ty

x, = 0if k »2M*t
i =0if k=N for o =+ = my,

where N(r) is the smallest integer such that
maox - -

. (U g ang).
Then one can easily show that,
glx) =6 but |4, (x)|l = L. which contradicts (6). This complete the proof of the theorem.
Theorem 3.2. Let 1 < p, < sup, p, < @ Then A € (r%(u,p).c) if and only if

(i) there exists an integer E = 1.such that
SUP e mex . oy _
UE)= Er=n|'5?:' o (uE"gi e

(i) @pgp = o n = o0, kis fived).

e

Iy
E~'r = oo,

lim
M Aa(0)

exists for every x € r{u. p). Therefore, by an argument similar to that in theorem 2.1, we have

Proof. Necessity. Suppose 4 € (r%(u,pl.c). Then A,(x) exists for each n =1, and .

condition (i). Condition (ii) is obtained by taking x = &; € »%(u.p), where ¢; is a sequence with 1 at
the k-th place and zeros elsewhere.
Sufficiency. The condition of the theorem imply that

== f.r
D o™ (uitaztan)| BT < UE) < o0 (8
r=0

By (8), it is easy to check that Xi.;a; xy is absolutely convergent for each x € »%(u. p). For each
x € ri{u, p) and € = 0. we can choose an integer m, = 1 such that

Pr
1 Z |
UpfrLr
Qur

¥

=

@ = )

F=Mp

= g™,

Then by the proof of theorem 2.1 and by inequality (1) we have

= =

(anie = @) %/ (g GNY™ = D (i = )i (my G

r=mg ¥

k=17

= Z Z ut g an — @) Upgex o/ (Gm G Y

r=mg ¥

= Z mfx (H;l_-i l?;?’- {aﬂ;l. — ct;l.j:] Z Up X 1o/ (G, {_r:]:]l‘»;f

=g

Vol.3.Issue.3.2015 (July-Sept) 68



A B M REZAUL KARIM et al Bull.Math.&Stat.Res
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=
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v
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(" a3 s — @) |r' E~r + Oimy (x) [ (Gm, {X:]]ﬂr“]
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= .
D o ™ it aitlans — @i )| B +1
=g

= EQQU(E) + 1)

That is,

> (o — @)z <EQUE) + 1) (g, (O = EQUIE) +De

Where

2.

=g
It follows immediately that
..':'m Ex

R
ko1 Onk X = Limy oy Xy

Ly
Qo m,fx':“i._-l g Hlag;, — 5‘;.-:']| E~'r < 2U(E) « oo,

1 —= 0o
This shows that 4 € (#%(u. ). ¢}, which proves the theorem.
Corollary3.3.let 1 < p, <sup, pr <@ and prl+6 =1 r=01.23 . oo
Then A e (% (u.pl. ) if and only if
(i) there exists an integer E = 1, such that

UE)=""F B5s |0 ™ (it g o)
and

(iiday, —=0. (n— oo, kis fixed)

where ¢ is the space of all null sequences.
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