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ABSTRACT 

In this paper we define the Riesz sequence spaces (u, p) and 

determine its Kothe-Toeplitz duals. We also establish necessary and 

sufficient conditions for a matrix A to map to   and   to 

c, where  is the space of all bounded sequences and c is the space of 

all convergent sequences. 
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1. INTRODUCTION 

Let   be the space of all sequences real or complex and l , c  and 0c are respectively the space of 

all bounded sequences, convergent sequences and null sequences. 

The main purpose of this paper is to define and investigate the Riesz sequence space  and 

prove that it is a complete paranormed space. Later we determine the β-dual (Kothe-Toeplitz dual) 

of  and characterize the class of matrices  and . 

If   is a positive sequence of real numbers then for  with  we define the Riesz 

sequence space  by 

 

where  a sum over the ranges  and  

. 

With regard to notation, the dual space of  , that is, the space of all continuous linear 

functional on  will be denoted by .  
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In their paper Sheikh and Ganie [10] defined   in a different norm with the help of [2, 3, 4] 

and studied completeness and consider some matrix mapping. If then the 

sequence space  of [10] reduces to  which introduced by Atlay and Basar [1]. 

Throughout the paper the following well known inequality (see[7] or [8]) will be frequently used. For 

any integer  and two complex numbers a and b we have   

  

                                       where . 

To begin with, we show that the space  is a paranorm space paranormed by  

                                                      (2) 

provided . 

Clearly 

             . 

Since  we have 

 

 

 

and since , we see by Minkowski’s inequality that  is subadditive. 

         Finally we have to check the continuity of scalar  multiplication. From the definition of   

we have   So we may assume that  Now for any complex  

  with  we have  

 

 

 

It is quite routine to show that    is a metric space with the metric  provided 

that   where   is defined by (2); And using a similar method to that in [5] one can 

show that  is complete under the metric mentioned above. 

2.   Duals 

If  is a sequence space, then  will denote the generalized Kothe-Toeplitz  of   

. 

Now we are giving the following theorem by which the generalized Kothe-Toeplitz  dual will be 

determined. 

Theorem 2.1. If  , then 

 
Proof. Let  
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Define 

           (3) 

We want to show that   . 

Let  and  . Then using inequality (1), we get  

 

 
 

 

 
                               

which implies that the series  is convergent. Therefore, 

 , that is,  

Conversely, suppose that  is convergent for all , but  . Then 

 
for every integer . 

So, we can define a sequence , such that  

, we have 

. 

Now we define a sequence (see [5], [6], [9])   in the following way: 

 
for  

 where  is such that , the maximum is taken with respect to k  

 in  

Therefore , 

 

 

 

 

 

 
diverges. Moreover 
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That is, , which is a contradiction. 

Hence  , that is,  . Then combining the above two results we get 

 
Theorem 2.2. Let     Then  is isomorphic to  which is defined by (3). 

Proof. It is easy to check that each   can be written in the form  

 
and  the 1 appears at the k-th place. Then for any  we have  

 
where   By Theorem 2.1, the convergence  of   for every implies 

that  

If   and if we take    then by theorem 2.1 ,  converges and clearly 

defines a linear functional on . Using the same kind of argument as in theorem 2.1 , it is easy 

to check that  

 
when , where g(x) is defined by (2). Hence   defines an element of . 

Furthermore, it is easy to see that representation (4) is unique. Hence we can define a mapping 

. 

By where   appears in representation (4). It is evident that   is linear 

and bijective. Hence   is isomorphic to . 

3. Matrix Transformations 

Let  be an infinite matrix of complex numbers   and  be  two subsets 

of the spaces of complex sequences. We say that the matrix A defines a matrix  transformation from  

 and denote it by if for every sequence  the sequence  is 

in , where 
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provided the series on the right is convergent. 

In this section we characterize the class of matrices  and  ,  where  

 and  are respectively the Banach spaces of all bounded and convergent sequence  

endowed with the norm . 

Theorem 3.1.  Let    Then    if and only if there exists an 

integer  such that  

 
and   

Proof.  Sufficiency.  Suppose there exists an integer   such that . Then by inequality 

(1), we have  

 

 

 

 

 
. 

Therefore,  

Necessity. Suppose that  , but  

 
for every integer   Then   converges for every n and    

whence 

 
for every n. 

By theorem 2.1 , it follows that each  defined by  

 

is an element of   Since   is complete and since   on , by the 

uniform boundedness principle there exists a number  L independent of n and x, and a number 

 such that  

  (6) 

For every  n and  , where  is the closed sphere in  with center at the origin  

and radius . 

Now choose an integer   such that  
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Since  

 
there exists an integer    such that 

 
Define a sequence   as follows: 

 
 

 
 

 
 

, 

 

     where   is the smallest integer such that 

. 

Then one can easily show that,   

 which contradicts (6). This complete the proof of the theorem. 

Theorem 3.2. Let    Then    if and only if  

(i) there exists an integer  such that  

               U(E)  

(ii)  

Proof.  Necessity. Suppose .  Then   exists for each , and  

exists for every . Therefore, by an argument similar to that in theorem 2.1, we have 

condition (i). Condition (ii) is obtained by taking  , where  is a sequence with 1 at 

the k-th place and zeros elsewhere. 

Sufficiency.   The condition of the theorem imply that  

 
By  (8), it is easy to check that    is absolutely convergent for each  . For each  

 and  we can choose an integer    such that 

 
Then by the proof of theorem 2.1 and by inequality (1) we have 
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That is , 

 
Where 

 
It follows immediately that 

                              

This shows that , which proves the theorem. 

Corollary 3.3. Let   and  

Then  if and only if  

(i) there exists an integer  such that  

U(E)  

           and 

 
where   is the space of all null sequences.   
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