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ABSTRACT 

This paper considers the problem of steady laminar two dimensional boundary 

layer flow and heat transfer of nanofluids past an exponential stretching sheet. 

The governing boundary value problem, consisting of equations of motion and 

heat transfer for a nanofluid flow past an exponential stretching sheet, with 

their respective boundary conditions are considered for investigation. This 

boundary value problem consisting of nonlinear partial differential equations, 

are transformed into nonlinear ordinary differential equations using suitable 

similarity transformation and are solved numerically solved by using fourth 

order Runge-Kutta method, along with shooting technique. The solution mainly 

depends on  Prandtl number Pr, Lewis number Le, Brownian motion parameter 

Nb and thermophoresis parameter Nt .The variation of the local Nusselt number 

and local Sherwood number with Nb and Nt for various values of Pr and Le is 

presented in tabular and graphical forms. It is found that the local Nusselt 

number is a decreasing function, while the local Sherwood number is an 

increasing function for each of the dimensionless parameters Pr,Le,Nb and Nt 

well thought-out. 

Keywords:-Nanofluid, Stretching sheet, Brownian motion, Thermophoresis, Heat 

transfer, Similarity solution,  boundary layer flow, Exponential stretching sheet. 
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Nomenclature 
b,c     constant 

fc               skin friction coefficient 

wu              is the velocity of the stretching sheet 

wC       is nanoparticles volume fraction at the 

stretching surface 

C              ambient nanoparticles volume fraction 

BD            brownian diffusion coefficient 

TD             thermophoresis diffusion coefficient 

f ( )          dimensionless stream function 

               thermal conductivity 
Pr               prandtl number 
Le               lewis number 
Nb              brownian motion parameter 
Nt               thermophoresis parameter 
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xNu          local Nusselt number 

xSh           local Sherwood number 

xRe          local Reynolds number 

WT     uniform temperature at the surface of the sheet 

T      ambient temperature or is the temperature 

far away from the sheet 
T          temperature of the fluid inside the boundary 
layer u,v velocity component along x and y-direction 
p               is the fluid pressure 
 Greek symbols 

              dimensionless similarity variable 

              dynamic viscosity  of the fluid 

              kinematic viscosity of the fluid 

              dimensionless concentration function 

f            density of the fluid 

f(a )      heat capacity of the fluid 

p(a )      effective heat capacity  of  a nano fluid 

             stream function 

              thermal diffusivity 

               dimensionless temperature 

               parameter defined by 
p f(a ) /(a )   

Subscripts 
              condition at the free stream 
w              condition of the surface 

 
1.INTRODUCTION 

 The theoretical studies of fluids flowing over a continuous stretching sheet has drawn 

attention of engineers and scientists for the last few decades due to the fact that this class of fluids 

corresponds to several industrially important fluids. Various applications of these fluids are present 

in the industry including cooling and drying of papers and textiles, extrusion of polymer fluids, 

artificial and natural gels, cooling of infinite metallic plate in cooling bath and spinning of fibers etc.  

 The heat transfer rate from the sheet into the fluid is very important, as in  in such 

applications, it induces a direct impact on the quality of the products. However, the common 

conventional heat  transfer fluids such as water,ethylene glycol, and engine oil have limited heat 

transfer capabilities owing to their low thermal conductivity, whereas metals have much higher 

thermal conductivities than these fluids. Therefore,dispersing high thermal conductive solid particles 

in a conventional heat transfer fluid may enhance the thermal conductivityof the resulting fluid. 

 After the pioneering work of Sakiadis [1], a huge amount of literature is accessible on 

boundary layer flow of Newtonian and non-Newtonian fluids over stretching surface [2-

10].However, only a limited attention has been paid to the study of exponentially stretching surface 

.Further it is noticed that Magyari and Keller [11] were  the first, who considered the boundary layer 

flow and heat transfer over an exponentially stretching sheet and also investigated the heat transfer 

aspects of the flow with varying wall temperature. Bidin and Nazar [12] , Ishak [13] and Nadeem et 

al.[14-,15]  numerically examined the flow and heat transfer over an exponentially stretching surface 

with thermal radiation. Elbashbeshy[16] numerically examined the flow and heat transfer over an 

exponentially stretching surface considering wall mass suction. Sanjayanand and Khan[17] studied 

the viscous-elastic boundary layer flow  and heat transfer due to and exponentially stretching sheet.  

Partha et al. [18] obtained similarity solution for mixed convection flow past an exponentially 

stretching surface by captivating into account the influence of viscous dissipation on the convective 

transport. Al-odat et al.[19] discussed the effect of magnetic field on thermal boundary layer flow on 

an exponentially stretching surface with an exponential temperature distribution. Sajid and Hayat 

[20] showed the influence of thermal radiation on the boundary layer flow and heat transfer of an 

incompressible viscous fluid due to an exponentially stretching sheet, and they reported series 

solutions for velocity and temperature using HAM. 

 Recently, Anuar Ishak[13] studied the MHD boundary layer flow due to an exponentially 

stretching sheet with radiation effect. He solved it numerically by an implicit finite-difference 

method. V. Singh, Shweta Agarwal[21] explained the effects of heat transfer for two types of 

viscoelastic  fluids over and exponentially stretching sheet with thermal conductivity and radiation in 
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porous medium. He solved it by well known fourth order Runge-Kutta method with shooting 

technique. Krishnendu Bhattacharyya[22] presented the effect of steady boundary layer flow and 

reactive mass transfer past an exponentially stretching surface in an exponentially moving free 

stream. R.N.Jat and Gopi Chand [23] worked on MHD flow and heat transfer over an exponentially 

stretching sheet with viscous dissipation and radiation effects. Bikash Sahoo[24] analyzed the effects 

of  flow and heat transfer of a third grade fluid past an exponentially sheet with partial slip boundary 

condition. Sohail Nadeen and Changhoon Lee[25] has discussed the boundary layer flow of a 

nanofluid over and exponentially stretching surface. He solved it analytically by  HAM method. It is 

well known that Choi [30] was the first to introduce the term’nanofluid’ that represents the fluid in 

which nano-scale particles are suspended in the base fluid with low thermal conductivity suchas 

water, ethylene glycol, oil etc. The use of chemical addition is a technique applied to enhance the 

heat transfer performance of base fluids.Nanofluids have been revealed to increase the thermal 

conductivity and convective heat transfer performance of base liquids [31]. There are numerous 

biomedical applications that involve nanofluids such as magnetic cell separation, drug delivery, 

hyperthermia and contrast enhancement in magnetic resonance imaging.     

          Thus motivated by the above mentioned investigations and applications of exponential 

stretching sheet, we felt appropriate to discuss steady laminar two dimensional boundary layer flow 

and heat transfer of nanofluids past an exponential stretching sheet.  

2. Mathematical formulation. 

          We consider a steady, incompressible, laminar, two dimensional boundary layer flow of a  

viscous nanofluid past a flat sheet coinciding with the plane y=0 and the flow being confined to y>0 

.The flow is generated due to  stretching of the sheet caused by the simultaneous application of two 

equal and opposite force along the x-axis. Keeping the origin fixed, the sheet is then stretched with a 

velocity   w 0u u (x) U exp(x / L)  ,where 0U is the reference velocity, L is the reference length 

and x is the coordinate measured along the stretching surface varying exponentially with the 

distance from the slit as shown in Fig 1. 

 
 

 It is assumed that at the stretching surface, the temperature T and the nanoparticles fraction 

C take constant values wT  and wC respectively. When y attends infinity, the ambient values of 

temperature T and nanoparticles fraction C are denoted by T  and  C  respectively. The fluid is a 

water based nanofluid containing three types nanoparticles Cu, Al2O3 and TiO2. It is further 

assumed that the base fluid and the suspended nanoparticles are in thermal equilibrium. 

 The basic steady conservation of mass, momentum, thermal energy and nanoparticles 

equations for nanofluids can be printed in Cartesian co-ordinates x and y as, see Kuznetsov and Nield 

w Ou (x) U exp(x / L)

,T C 
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[26-27].The  flow and heat transfer characteristics under the boundary layer approximations are 

governed  by the following equations. 

2

2

22

T
B2

2 2

T
B 2 2

u v
0 (1)

x y

u u u
u v (2)

x y y

DT T T C T T
u v D      (3)

x y y y y T y

DC C C T
u v D  (4)

x y y T y





 
 

 

   
   

   

              
              

               

       
       

       

The boundary conditions are 

     w W Wv 0, u u (x), T T , C C , at y 0   (5)              

 
  u = v = 0, T T , C C as y               (6)

 

Where u and v are the velocity components along x and y axis respectively,  f/   is the 

kinematic viscosity, f/(c )     is the thermal diffusivity,  BD is the Brownian diffusion coefficient, 

TD  is the thermophoresis diffusion coefficient and p f( a) /( a)    is the ratio between the 

effective heat capacity of the nanoparticles material and heat capacity of the nano fluid. T is the 

temperature inside the boundary layer, T  is the temperature far away from the sheet.  

wu (x) U exp(x / L)  is the stretching velocity of the sheet, wT T bexp(x / 2L)  is the 

temperature of stretching surface and wC C cexp(x / 2L)  is nanoparticles volume fraction at 

the stretching surface.  

We are interested in similarity solution of the above boundary value problem therefore we 

introduce the following similarity transformations (dimensionless quantities). 

0
0

w w

' '0
0

U T T C C
y exp(x / 2L) , 2 LU exp(x / 2L)f ( ), ( ) , ( )

2 L T T C C

U
u U exp(x / L)f ( ), v exp(x / 2L){f ( ) f ( ) } (7)

2L

 

 

 
           

  


      

In eqn(7) ,f denotes the  non-dimensional stream function , the prime denotes differentiation with 

respect to  and  the stream function  is defined in the usual way as      u / y, v / x.

 Making use of transformations(7)  in (1), we can realize incompressibility condition (i.e. continuity 

equation)  is identically satisfied and the governing eqns (2) - (4) takes  the form of  non-linear 

ordinary differential equations: 
2

2

' ' ' ' ' '

' ' ' ' ' '

' ' ' ' ' '

f ff 2f 0 (8)

Pr f Pr Nb Pr Nt 0 (9)

Nt
Le(f f ) 0 (10)

Nb

  

       

       

The boundary conditions are 
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'

'

f(0) 0, f (0) 1, (0) 1, (0) 1 at 0

f ( ) 0, ( ) 0, ( ) 0 as (11)

       

        

Where f,  and  are dimensionless velocity, temperature and nanoparticles concentration, 

respectively.   is the similarity variable, the  prime denote differentiation with respect to    and 

the governing  parameters appearing in eqs (8) to(10) are defined by 

B

p B w

f

p T w

f

Pr Pr andtl number

Le Lewis number
D

(12)
( c) D (C C )

Nb Brownian motion parameter
( c)

( c) D (T T )
Nt Thermophoresis parameter

( c) T







 
  


  



 
 

  


   
  

 

It is important to note that this boundary value problem reduces to the classical problem of flow and 

heat and mass transfer due to a stretching surface in a viscous fluid when Nb and Nt are zero in 

eqs.(9)-(10) . 

The important physical quantities of interest in this problem are local Skin friction coefficient fC , the 

local Nusselt number xNu  and the local Sherwood number xSh are defined as: 

w w m
f x x2

w w B w

xq xq
C , Nu , Sh (13)

u k(T T ) D (C C )
 


   

  

 

Where wall shear stress w , wall heat flux wq , mass flux mq  are given by: 

w w m B

y 0 y 0 y 0

u T
, q k , q D (14)

y y y
  

       
           

       

 

Where f x x xC , Nu (Nur), Sh (Shr), Re  are the skin friction, local Nusselt number, local Sherwood 

number and local Reynolds number respectively. 

By solving eqs.(13) using eqs.(7),(14).We get 

' ' ' 'x x
f x

x x

2 Nu 2 Sh
C 2R e f (0), (0) Nu r, (0) Sh r (15)

X XR e R e

   
          

   
   

  

Where X=x/L is dimensionless coordinate along the sheet, L is the length of the sheet, 

f x x xC , Nu (Nur), Sh (Shr), Re  are the skin friction, local Nusselt number , local Sherwood 

number and local Reynolds number respectively. 

3. Numerical solution.                         

  An efficient fourth order Runge-Kutta method along with shooting technique has been 

engaged to study the flow model of the above coupled non-linear ordinary differential equations (8)-

(10) for different values of governing parameters viz. Prandtl number Pr, Lewis parameter Le, 

Brownian motion parameter Nb and thermophoresis parameter Nt. The non-linear differential 

equations are first decomposed into a system of first order differential equations. The coupled 
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ordinary differential eqs.(8)-(10) are third order in f and second order in  and   which have been 

reduced to a system of seven to a system of seven simultaneous equations for seven unknowns. In 

order to numerically solve this system of equations using Runge-Kutta method, the solution requires 

seven initial conditions but two initial conditions in f one initial condition in each of  and  are 

known. However, the values of f,  and  are known at  .These end conditions are utilized to 

produce unknown initial conditions at 0   by Shooting technique. The most important step of this 

scheme is to choose the appropriate finite value of  .Thus to estimate the value of  , we start 

with some initial guess value and solve the boundary value problem consisting of Eqs. (8)-(10)  to 

obtain 
'' ' 'f (0), (0)and (0)  .The solution process is repeated with another larger value of  until 

two successive values of 
'' ' 'f (0), (0)and (0)   differ only after desired significant digit. The last 

value  is taken as the finite value of the limit  for the particular set of physical parameters for 

determining velocity, temperature, and concentration, respectively are f (0), (0)and ((0)  in the 

boundary layer. After attaining all the initial conditions, we solve this system of simultaneous 

equations using fourth order Runge-Kutta integration scheme. The value of  is selected to vary 

from 5 to 20 depending on the physical parameters governing the flow so that no numerical 

oscillation would occur. Thus, the coupled boundary value problem of third-order in f, second order 

in  and  has been reduced to a system of seven simultaneous equations of first-order for seven 

unknowns as mentioned below, 

 The eqs.(8)-(10) can be expressed as: 

  

        

 
             

 

2

2

2

' ' ' ' ' '

' ' ' ' ' '

' ' ' ' ' ' ' '

f f f 2 f

P r [f N b N t ]

N t
Le (f f ) Pr [f N b Nt ]

N b
       

 

Now we can define new variable variables by the equations: 

 
          ' ' ' ' '

1 2 3 4 5 6 7f f, f f , f f , f , f , f , f
 
 

The coupled higher order non-linear differential equations (8)-(10)) with the   boundary conditions 

(11) may be transformed to seven equivalent first order differential equations and boundary 

conditions as given below: 





  



   



 
      

 

2

'

1 2

'

2 3

' 2

3 1 3 2

'

4 5,

'

5 1 5 5 7 5

'

6 7

' 2

7 1 7 2 6 1 5 5 7 5

f f ,

f f ,

f f f 2 f ,

f f

f Pr [ f f Nb f f Nt f ],

f f ,

Nt
f Le(f f f f ) Pr [f f Nb f f Nt f ]

Nb (18)

 

A prime denotes the differentiation with respect of   and the boundary conditions    are: 

  
         1 2 4 6 2 4 6f (0) 0, f (0) 1, f (0) 1, f (0) 1, f ( ) 0, f ( ) 0, f ( ) 0

   (19)
 

(16) 

(17) 
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In this study, the boundary value problem is first converted into an initial value problem 

(IVP).Then the IVP is solved by appropriately guessing the missing initial value using the shooting 

method for several sets of parameters. The step size h=0.1 is used for the computational purpose 

The error tolerance of 610  is also being used. The results obtained are presented through tables 

and graphs, and the main features of the problems are discussed and analyzed. 

4. Results and discussion. 

The numerical solutions are obtained for velocity, temperature and concentration profiles 

for different values of governing parameters. The obtained results are displayed through graphs 

from,Figs.2-13 for velocity,temperature and concentration profiles respectively.  

Figs 2, 3 and 4. shows the effects of Nt and Nb parameters for the selected values of Pr and 

Le numbers . As expected, the boundary layer profiles for the temperature function ( )  are 

essentially the same form as in the case of a regular fluid. It is observed that  the temperature 

increases as the parameters (fig 2,Nt,Nb=0.1,0.3,0.5) ,(fig3,Nb=0.1,0.2,0.3) and (fig 4,Nt=0.1,0.3,0.5) 

increases, which results in thickening of  thermal  boundary layer  of the fluid . An increase in Nb 

corresponds to the effective motion of nanoparticles within the flow. The intensity of this chaotic 

motion increases the kinetic energy of the nanoparticles and as a consequence the nanofluid's 

temperature rises. In nanofluids the Brownian motion takes place due to the size of nanoparticles 

which is of nanometer scale and at this level, the particle motion and its effect on the fluid have a 

pivotal role in the heat transfer. . From the definition of thermophoretic parameter Nt, it is obvious 

that larger values of Nt correspond to the larger temperature difference and shear gradient. 

Thus increase in Nt leads to the larger temperature inside the boundary layer as depicted in Fig 4. 

Figs. 5  and 6 shows the effects of Pr and Le numbers on the temperature profiles for the 

selected values of Nb and Nt parameters .It is observed that the temperature decrease,as the 

parameters in (fig5, Pr,Le=1,10) and (fig6, Pr=10,15,20) increases, which results in thinning of  

thermal  boundary layer thickness of the fluid .   

Figs. 7, 8 and 9 shows the effects of Nb ,Le and Nt parameters on the concentration profiles 

for the selected values of other  parameters .It is observed that the concentration decrease as the 

parameters (fig7, Nb=0.1, 0.3, 0.5), (fig8 ,Le=10,20,30)  increases, while concentration increases as 

the parameter(fig9,Nt=0.1,0.2,0.3) increases. In fig 7and 8 which results in thinning of concentration 

boundary layer thickness of the fluid. Whereas in fig 9,it is noticed, the thickening of concentration 

boundary layer thickness of the nano fluid 

From fig 2. and fig 7, we can say that  the temperature profiles converge quickly than the 

concentration profiles. The thickness of the boundary layer for the concentration profiles ( )  is 

found to be lesser than the thermal boundary layer thickness when Le>1.It decreases with the 

increase in Nb and this decrease diminishes when Nb>5. 

Figs. 10(a) and 10(b) shows , the variation in dimensionless heat transfer rates(i.e.  Nusselt 

number) vs Nt  for Pr=1and Pr=10   respectively. These figures illustrate the effects of Pr  and Nb on 

the dimensionless heat transfer rates for the same combination of Le. It is noticed that the local 

Nusselt number decreases with the increase in Nb and Nt , but increase with increase in Pr, with 

higher Prandtl number has a relatively lower thermal conductivity, which results in reduction of the 

thermal boundary layer thickness.  

Figs. 11(a) and 11(b) shows for both the cases of LSS and ESS, the variation in dimensionless 

heat transfer rates vs Nt for Le=5 and Le= 25  respectively. These figures show the effects of Le  and 

Nb on the dimensionless heat transfer rates for the same combination of Prandtl numbers. It is 

noticed that the local Nusselt number decreases with the increase in Nb and Nt  but decrease with 
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increase in Le. The alteration in the dimensionless heat transfer rates is found to be higher for 

smaller values of  Nb and this change decreases with the increase of Nt.  

Figs. 12(a) and 12(b) depicts the variation in dimensionless mass transfer rates (i.e. local 

Sherwood number) vs Nt parameter for Pr=1 and Pr=10   respectively. These figures show the effects 

of Pr  and Nb on the dimensionless mass transfer rates for the same combination of Le .Further it is 

noticed  from figs12 (a) and 12(b),that the local Sherwood number increases with the increase in Nb 

and Nt, but increases with increase in Pr.  

Figs. 13(a) and 13(b) shows the variation in dimensionless concentration  rate (0)  vs Nt 

for Le=5 and Le= 25  respectively. These figures show the effects of Le  and Nb  on the dimensionless 

heat transfer rates for the same combination of Prandtl numbers. It is noticed that in fig 13(a) the 

local Sherwood number increases with the increase in Nb and Nt for Le=5 and in fig 13(b) local 

Sherwood number decreases with the increase in Nb and Nt  for Le=25,but however local Sherwood 

number increase with increase in Le.  

Finally, a comparison with published work available in the literature has been performed in 

order to check the accuracy of the present results. 

 From table 1, it shows a test of accuracy of the  solution, the values of local Nusselt number 
'(0)   for different values of Prandtl number are compared with  solutions reported by  Magyari 

and Keller[11](1999),  El-Aziz[28](2009), Bidin and Nazar[12](2009), Anur Ishak[13](2011) and Swati 

Mukhopadhyay[29](2012). The table shows the  numerical solution obtained by the present fourth 

order Runge-Kutta method along with Shooting technique  is in very  good agreement. Therefore, we 

are confident that  results obtained by us are very much accurate to analyze the flow problem.   

Tables 2 and 3 shows  the variation of the local Nusselt number and local Sherwood number 

respectively for different values of Nb, Nt for Pr=10,Le=10.It is noticed that local Sherwood number 

is a decreasing function, while it is is an increasing  function for( Nb=0.1 to Nb=0.5 keeping Nt 

=0.1,0.2,0.3,0.4,0.5) and initially decreasing function for (Nt=0.1 to Nt=0.5 for Nb=0.1,0.2)  later 

appears to be an increasing function for ( Nt=0.1 to 0.5 for Nb=0.3 ,0.4,0.5). 

Table 1: Comparison of results for the local Nusselt number 
'(0)   for Nt =Nb=Le=0. 

Pr Magyari and 
Keller[11] 
 
(1999) 

El-
Aziz[28] 

 
(2009) 

Bidin & 
Nazar[12] 
 
(2009) 

Anur 
Ishak[13] 
 
(2011) 

S.Mukho-
adhyay  
&Gorla[29] 
(2012) 

         
Present 
 Results 
 

1.0 0.954782 0.954785 0.9548 0.9548 0.9547  0.951556 

2.0 --------     ------ 1.4714 1.4715 1.4714 1.465304 

3.0 1.869075 1.869074 1.8691 1.8691 1.8691  1.859997 

5.0 2.500135 2.500132 ------- 2.5001 2.5001  2.485222 

10.0 3.660379 3.660372 ------- 3.6604 3.6603  3.630831 

Table2  :Variation of  xNu  with Nb and Nt for Pr=10,Le=10. 

ESS Nb=0.1 Nb=0.2 Nb=0.3 Nb=0.4 Nb=0.5 

Nt    xNu  xNu  xNu  xNu  xNu  

0.1 1.996804 1.398096 1.010997 0.762334 0.600227 

0.2 1.680884 1.214909 0.906994 0.703189 0.565804 

0.3 1.463489 1.087530 0.833110 0.659919 0.539755 

0.4 1.309018 0.995461 0.778371 0.626898 0.519242 

0.5 1.195238 0.926248 0.736165 0.605640 0.502535 
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Table3:  Variation of xSh  with Nb and Nt for Pr=10,Le=10. 

ESS  Nb=0.1 Nb=0.2 Nb=0.3 Nb=0.4 Nb=0.5 

Nt   xSh    xSh     xSh    xSh   xSh  

0.1 2.977544 3.536209 3.661603 3.696171 3.703874 

0.2 2.608756 3.493767 3.676965 3.727476 3.738362 

0.3 2.533735 3.475994 3.690462 3.750683 3.764038 

0.4 2.438263 3.460115 3.697129 3.765798 3.782225 

0.5 2.351303 3.438623 3.696437 3.775423 3.792153 

5. Conclusions:         

 In this paper, effects of Prandtl number(Pr),Lewis number(Le),Brownian motion 

parameter(Nb),thermophoresis parameter(Nt) on temperature profiles, concentration profiles, local 

Nusselt number and local Sherwood number ,  on the boundary layer flow and heat transfer of 

nanofluids past an exponential stretching sheet is  investigated. The variation of the local Nusselt 

number and local Sherwood numbers with Nb and Nt for various values of Pr and Le is presented in 

tabular and graphical forms. The numerical results obtained are in excellent agreement with the 

previously published data in limiting condition and for some particular cases of the present study. 

The following conclusions have been drawn from the present study: 

The effects of Pr,Le  and  are  inversely proportional to temperature where as the reverse effect is 

seen in case of Nt,Nb.  

The effects of N is directly proportional to concentration (mass fraction) where as the reverse effect 

is seen in case of Nb and Le . 

In the case of LSS, it is  found that the local Nusselt number is a decreasing function, while the local 

Sherwood number is an increasing function for each of the dimensionless parameters Pr,Le,Nb and 

Nt considered . 

The local Sherwood number is an increasing function of higher Pr and a decreasing function of lower 

Pr , while local Nusselt number is a decreasing function  for lower Pr and increasing function for 

higher Pr for  each of Le, Nb and Nt. 

The local Nusselt number is a decreasing function of higher Le and an increasing function for lower 

Le, while local Sherwood number is an increasing function of higher Le and decreasing function for 

lower Le for each Pr,Nb,and Nt. 
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