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ABSTRACT 

In this paper, we discussed  BFGS quasi – Newton method for solving 

unconstrained optimization problems. we showed the properties of BFGS 

technique with inexact line search algorithms such as Wolfe line search and 

backtracking line search. Some theorems that related to convergence of BFGS 

method have been introduced. Finally, we presented and proved a number of an 

important theorems that ensure the global convergence of BFGS technique 

under strongly convex optimization problem. 
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Optimization problem, Wolfe conditions. 
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1. INTRODUCTION 

The most well-known optimization technique for unconstrained problems is Newton method. It is 

effective and robust. The second derivative need to be calculated analytically and supplied to the 

algorithm by the user.But Newton methods has the disadvantage of being computationally 

expensive, the inverse of the Hessian matrix has to be calculated  in every iteration, and that is 

rather costly. Moreover, in some applications, the second derivatives may be unavailable. One fix to 

the problem is to use a finite difference approximation to  Hessian. The other fix, which is more 

widely used, is quasi-Newton methods, where approximate Hessian or inverse Hessian updates are 

updated in each iteration, while the gradients are supplied[6].  

Quasi-Newton methods are arguably the most popular class of the non-linear numerical 

optimization methods. Quasi-Newton methods are based on the  Newton's method but don’t 

require calculation of  the second derivatives since sometimes, it is very difficult to derive the 

Hessian H. They update an approximate Hessian matrix at each iteration of the algorithm . i. e., in 

Quasi-Newton methods, Hessian matrix is estimated by using successive gradient vectors[7,8]. 
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There are many different quasi-Newton update formulae, which are the most popular algorithms, 

namely : BFGS, DFB, PSB,SR1,etc. From these algorithms, BFGS is the most effective quasi-Newton 

method [9]. 

BFGS is the most popular quasi-Newton method, it is the most effective algorithm. The advantage of  

BFGS method is that this method preserves the structural properties needed for the  line search 

direction methods in optimization which are the symmetry and the positive definiteness [1]. 

To compute the new step update in BFGS method one can use either the line search or the Trust 

Region strategies.These two strategies   have different properties and are best used with specific 

Hessian approximation or inverse Hessian approximation updates. The line search will need the 

Hessian approximation or inverse Hessian approximation to be symmetric and positive definite [5]. 

Since, in practical computation, theoretically exact optimal step length generally cannot be found, 

and it is also expensive to find almost exact step length, therefore the inexact line search with less 

computation load is highly popular ( such as : Wolfe line search, Goldstein line search,backtracking 

line search,etc) [2]. 

In this work we will discuss the global convergence properties of BFGS technique with inexact line 

search algorithms.Also we will prove that If the optimization function is strongly convex then the 

global convergence  will always hold.   

2. Newton Methods [6]  

The most well-known minimization technique for unconstrained problems is Newton method. It is 

effective and robust. In each iteration, the step update is : 

                                         xk+1 = xk − (∇2 fk)−1 ∇fk. 

The second derivative need to be calculated analytically and supplied to the algorithm by the user. 

2.1. Univariate Function [6]   

Starting form initial guess x0, Newton's method finds a sequence of xk  that converges to an x  such 

that f(x) = 0, i.e., the root of equation. By Taylor's series expansion, 

f  x + ∆x  = f(x) +  f´(x) ∆x +  
1

2
  f´´(x) ∆x2 + ∙∙∙                                           (1) 

For small enough ∆x, and for well-behaved functions, 2nd- and higher-order terms are negligible.  

When method converges, f  x + ∆x  ≅ 0.     

     So,                        ∆x = - 
f(x)

f´(x)
                                                                              (2)                                             

That is, update x as follows:  xk + 1 = xk  - 
f( xk)

f´( xk)
                                     (3)                                                              

Newton's method can also be used to find the max or min of  f(x).  

in this case, we find  x   such that  f´ x + ∆x  ≅ 0. 

So, the update equation is :    xk + 1 = xk  - 
f´( xk)

f´´( xk)
                                           (4)                                                      

2.2.  Multivariate Function[7,10]  

     For multivariate function f(x),  

• f´(x) is replaced by the gradient of f:  

    g = ∇f =  
∂ f

∂ x1
   

∂ f

∂ x2
  ∙∙∙  

∂ f

∂ xn
 

T
.                         (5) 

•  f´´(x) -1 is replaced by inverse of Hessian matrix  H of f: 

H =  ∇2f =  

 
 
 
 
 

 

𝜕2  f

𝜕 x1
2

𝜕2  f

𝜕 x1 𝜕x2
   ⋯

𝜕2  f

𝜕 x1 𝜕xn

⋮ ⋮ ⋱ ⋮
𝜕2  f

𝜕 xn 𝜕x1

𝜕2  f

𝜕 xn 𝜕x2
⋯

𝜕2  f

𝜕 xn
2

   

 
 
 
 
 

                                              (6) 
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(Note that H is the Jacobian of g.However, H has more structure than a Jacobian for a general non- 

linear function. If f is twice continuously differentiable function, then the Hessian matrix is 

symmetric [1]). 

The update equation becomes :  

             xk + 1 = xk −  H (xk) -1 ∇f (xk)                                                             (7)         

Usually, the learning rate ƞ is introduced:  

              xk + 1 = xk  – ƞ  H (xk) -1 ∇f (xk)                                                          (8) 

Eq.  8  is called modified Newton method. 

The classical modified Newton method:  

             xk + 1 = xk  - ƞ  H (x0) -1 ∇ (xk)                                                             (9) 

Note that the Hessian matrix is only evaluated at the initial point x0.  

Newton methods has the disadvantage of being computationally expensive, the inverse of the 

Hessian matrix has to be calculated in every iteration, and that is rather costly. Moreover, in some 

applications, the second derivatives may be unavailable. One fix to the problem is to use a finite 

difference approximation to  Hessian (For more details, see [6]).  

The other fix, which is more widely used, is quasi-Newton methods, where approximate Hessian or 

inverse Hessian updates are updated in each iteration, while the gradients are supplied. 

3. Quasi-Newton Methods[7,8,10]  

      Quasi-Newton methods are arguably the most popular class of the non-linear numerical 

optimization methods. Quasi-Newton methods are based on the  Newton's method but don’t 

require calculation of  the second derivatives since sometimes, it is very difficult to derive the 

Hessian H. They update an approximate Hessian matrix at each iteration of the algorithm . i. e., in 

Quasi-Newton methods, Hessian matrix is estimated using successive gradient vectors.  

The approximation B of Hessian matrix  is chosen to satisfy:  

          ∇ f  x + ∆x  = ∇ f (x) + B ∆x                                                               (10) 

The update equation is :  

             xk + 1 = xk  - ƞ Bk
-1

 ∇ f (xk)                                                                 (11) 

or       xk + 1 = xk  - ƞk  Bk
-1

 ∇ f(xk)                                                                  (12) 

The basic idea behind the quasi-Newton formulae is to update Bk+1 to Bk  in some computational 

cheap ways while ensure the secant condition (eq.13), and the computation of the update should be 

relative cheap.Therefore, basic requirement for the updating formula is that the secant condition is 

satisfied in each iteration,  i.e.,                    

     Bk+1pk = qk                                                               (13)                                                                                              

where   

qk =  gk + 1 - gk,  pk =  xk + 1 -  xk. 

Also,the updated approximation must be symmetric positive definite. 

If n = 1,all secant methods reduce to the classical secant method for the single non-linear equation  

f´(x) = 0, i.e.,   

                              xk + 1 = xk  - 
fˊ( xk)(xk -xk− 1)

f´( xk)-f´(xk− 1  )
                                                     (14)            

The general structure of quasi-Newton method can be summarized as  

Given any starting point  x0 ∈ dom(f ), B0 any symmetric positive definite matrix (such as identity 

matrix I ).    

For  k  = 1,2,…, until a stopping criterion is satisfied    
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1. Compute quasi-Newton direction    dk =   - Bk
-1

 ∇ f (xk)    

2. Determine step size  ƞk  (e.g.,by backtracking line search ) 

3. Compute         xk+1 =   x k + ƞkdk       

4. Compute    Bk+1    .       

There are many different quasi-Newton algorithms use different rules for updating   B in step 4.  The 

standard quasi-Newton update for non-linear equation is Broyden method [6] :     

                 Bk + 1 = Bk + 
(qk−Bkpk) pk

T

pk
T pk

                                                             (15)   

Broyden method does not preserve the structural properties needed for line search direction 

methods in optimization, namely, symmetry and positive definiteness. 

There are four different quasi-Newton update formulas, which are the most popular algorithms, 

namely :                                                                               

BFGS  formula (Broyden-Fletcher-Goldfarb-Shanno ). 

DFB  formula  ( Davidon-Fletcher-Powell ). 

PSB  formula (Powell-Symmetric- Broyden ). 

SR1  formula ( Symmetric-Rank-1). 

From the above algorithms, BFGS is the most effective quasi-Newton method. (For  more  details  

see [5,6,7,9]). 

3.1  BFGS  Method[1,7] 

     BFGS is the most popular quasi-Newton method, it is the most effective algorithm. In this method, 

if  Bk is positive definite,then Bk+1  is also positive definite. Therefore, if B0 is chosen positive 

definite, the rest of the Bk will be positive definite. 

The updating formula has the form : 

            Bk + 1 = Bk + 
qk qk

T

qk
T pk

 - 
Bk  pk  pk

T Bk

pk
T Bk  pk

                                                               (16)     

The updating  eq.(16)is  satisfy the secant condition (eq.13),since         

Bk+1pk = Bkpk  + 
qk qk 

T 

qk
T pk

pk  - 
Bk  pk  pk

T Bk

pk
T Bk  pk

 pk = Bkpk+ qk – Bkpk  = qk. 

The advantage of  BFGS method is that this method preserves the structural properties needed for 

the  line search direction methods in optimization which are the symmetry and the positive 

definiteness. 

     To illustrate this point,  the following theorem is presented : 

Theorem (1) : Let  B0 (resp. Bo
−1 ) be a positive definite, then  qk

T pk > 0 is a necessary and sufficient 

condition for BFGS formula to give Bk (resp. Bk
−1 ) positive definite ∀ k ∈ N. 

Proof :  see [7]  ( P. 41).           

( Note : the condition qk
T pk > 0 is called the curvature condition[8])  

Lemma (2) [1] : Let Bk (resp. Bk
−1 ) be  a symmetric  positive definite, qk

T pk > 0, and  Bk + 1 given by 

eq.(16).Then Bk + 1(resp. Bk+1
−1 ) is symmetric positive definite  

Proof : From theorem(1) and secant condition.     

It is very useful for both theory and practice to express eq.(16)in terms of the inverse matrices. Let  

M = B−1 (inverse Hessian approximation),the following lemma gives the formula for the inverse 

updating :  

Lemma (3) :Let Bk be symmetric  positive definite,qk
T pk ≠ 0,and Bk+1 given by eq.(16).Then  Bk+1

−1   

(Mk+1) is non-singular and  

Mk+1 = (I −
pkqk

T 

qk
T pk

 ) Mk  (I −
qkpk

T 

qk
T pk

 ) +
pkpk

T 

qk
T pk

                                                       (17) 
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Proof : see [1] ( p.72).         

Eq.(17) can be rewritten as :      Mk+1 =   Mk  + Mk
U     ,  where  Mk

U    is the update matrix. Thus, we 

have  : 

 Mk+1 =   Mk  +  ( 1+ 
qk

TMk qk  

qk
T pk

 ) 
pkpk

T 

qk
T pk

 −  
pkqk

TMk + Mk qkpk
T  

qk
T pk

                               (18)                                                                                                                                                                                                                       

BFGS   Quasi-Newton Algorithm : 

𝟏) Input x0, M0, termination criteria. (x0 ∈ dom(f), M0 is any symmetric positive definite such as 

identity matrix). 

𝟐) For any  k, set Sk = - Mk  gk . 

𝟑) Compute a step size ƞk (e.g., by Wolfe line search ). 

𝟒) Set  xk + 1 = xk + ƞkSk  

𝟓) Compute the update matrix    Mk
U   by  using the values:  

                 qk = gk + 1 - gk ,  pk =  xk + 1 -  xk,  and  Mk . 

𝟔) Set  Mk+1 = Mk+ Mk
U     . 

𝟕) Continue with next  k  unitil termination criteria are satisfied.  

4.  Convex Optimization 

     In this section we will discuss the convex optimization problem  on BFGS quasi-Newton 

method.First, we present the following important basic definitions about the convex functions. 

Definition(1),[4] : A subset C of Rn  is convex  if for any  x, y ∈ C and any  θ ∈[0,1], we have :           

                                               θx +  1 − θ y ∈ C.                                               (19)                                   

(It is clear that the empty set, any singleton set, and the whole space  Rn   are convex subsets of   Rn ). 

Definition(2),[4] : A function  f ∶  Rn  → R is convex if dom(f ) is a convex set and if for all  

x, y ∈ dom(f ) and θ ∈  0,1  we have : 

                       f θx +  1 − θ y  ≤  θf x +  1 − θ f(y)                              (20)               

a function f is strictly convex if stric inequality holds in (20) whenever x ≠ y and θ ∈  0,1 . 

Remark(1),[4,7] :For differentiable functions, we note : 

1) If f is differentiable (i.e., its gradient ∇f exists at each point in dom(f ),which is open).Then  f  is 

convex  if and only if  dom(f ) is convex  and  

                                   f y ≥ f x + ∇f x T y − x                 (21)                                                        

holds for all  x, y ∈ dom f  .  

𝟐) f is strictly convex  if and only if  dom(f ) is convex  and for all x, y ∈ dom f  , x ≠ y we have 

                                   f y > 𝑓 x + ∇f x T(y − x)                                         (22)   

3) If f is twice differentiable (i.e., its Hessian ∇2f exists at each point in dom(f ),which is open). Then  

f  is convex  if and only if  dom(f ) is convex  and  its  Hessian is positive  semidefinite for all  

x ∈ dom f  .  

4) If ∇2f is positive definite for all  x ∈ dom f  , then  f is strictly convex,but the converse is not 

necessary true (Indeed, the converse will be true if f is quadratic function). 

5) If f is twice differentiable, then  f  is convex  if and only if  dom(f ) is convex and   y −

xT∇2fxy−x≥0,∀x,y∈domf .    

6) If f is twice differentiable and  y − x T∇2f x  y − x > 0, ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚 f , x ≠ y then f is strictly 

convex.  

Definition(3),[4] : A function  f ∶  Rn  → R is strongly convex if dom(f ) is a convex set and if  

∃ μ > 0  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∶         

                  ∇f y − ∇f x  
T
 y − x ≥ μ y − x 2 , ∀x, y ∈ dom(f).  

 Remark(2),[4,7] :For differentiable functions, we note  :  
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1) If f is differentiable, then if f is strongly convex then f is strictly convex and  

f y − f x ≥ ∇f x T y − x +
μ

2
 y − x 2 , ∀x, y ∈ dom f  . 

2) If f is twice differentiable, then : 

        f  is strongly convex   iff  yT∇2f x y ≥ μ  y 2, ∀y ∈ dom f  .   

3) If f  is quadratic, then : 

            f  is strongly convex   iff  its Hessian is positive definite.                       

4) If the function f  is convex quadratic then strongly convexity means strictly convexity and vice 

versa).  

Convex functions are of interest in the context of optimization theory for several reasons. They arise 

frequently and have many significant properties, among which is the fact that a local minimum of a 

convex function(on a convex domain) is a global minimum. This makes it possible to use local 

conditions to test for optimality.                          

Definition(4),[1] : The α −sublevel set of a function  f ∶  Rn  → R  is defined as:    

                                           Cα = { x ∈ dom f : f(x) ≤ α}                                (23) 

 Sublevel sets of a convex function are convex, for any value of α. 

Definition(5) :  An  n x n  matrix A is positive semi definite if xTAx ≥ 0  for all x ∈ Rn . A is positive  

definite if xTAx > 0  𝑓𝑜𝑟 𝑎𝑙𝑙 x ∈ Rn , x ≠ 0. 

Note : Every positive definite matrix is invertible and its inverse is also positive definite. 

4.1.  Mathematical  Optimization 

A mathematical optimization problem, or just optimization problem has the form :           

                                                  minimize  f(x)                                                    (24)                       

 Here the vector  x = (x1 , x2 , … , xn)is the optimization variable of the problem, the function  

f: Rn  → R  is the objective function.We say that the problem(24) is unconstrained because we 

impose no conditions on the independent variables x and assume that f is defined for all x.   

 Definition(6), [7]:  The vector x∗ ∈ dom f   is called optimal, or a solution of the problem (24) if it 

has the smallest objective value,this mean that : 

                                        f x∗ ≤ f z , ∀z ∈ dom(f)                         (25) 

(In fact, x∗ in this case is the global minimizer point for problem(24). 

Definition(7), [1,7]:  The optimization problem(24) is called a linear problem if the objective function 

f is linear,i.e., satisfy : 

f αx + βy = αf x + βf y  , ∀x, y ∈ Rn , ∀α, β ∈ R                                   (26)  

If the optimization problem is not linear, it is called a nonlinear problem. In the work, we will focus 

on a class of the optimization problems called the convex optimization problems. 

 Definition(8),[1,7] :  A convex optimization problems is one in which the objective function f is 

convex,which means it satisfy  

f αx + βy ≤ αf x + βf y  , ∀x, y ∈ Rn , ∀α, β ∈ R                                   (27)   

 with  α + β = 1, α ≥ 0, β ≥ 0 . 

We see that the convexity is more general than the linearity.  

Remark(3),[4,7] If  ∇f x = 0,then from eq.(21) we have f x ≤ f y , ∀y ∈ dom(f )  Therefore, the 

necessary and sufficient condition for x to be a global minimizer for optimization problem(24) is    

∇f x = 0.     

(Therefore, the stopping criterion is usually of the form  ∇f(x) 2 ≤ γ, where  γ is small and positive).                                                        

 

 

4.2.  Quadratic  Convex  Optimization  Problem[4]  



Bull .Math.&Stat.Res  

Vol.3.Issue.4.2015(Oct-Dec)   96 

RENHAO JIN et al., 

     The convex unconstrained optimization problem (24) is called a quadratic problem if the objective 

function f is quadratic function. 

Therefore, the optimization problem(24) can be written as follows : 

    minimize  f x =
1

2
 xTPx + qTx + r                                                           (28) 

where  P  is  symmetric positive semidefinite,q ∈ Rn   and  r ∈ R. 

 Remark(4),[6,7] For convex  quadratic  functions  f ∶  Rn  → R, we note:   

 1)  f  is convex if and only if  P is positive semidefinite.   

2)   f  is strictly  convex if and only if  P is positive definite. 

3) The necessary and sufficient condition for x to be a global minimizer for optimization problem(28) 

is   ∇f x = Px + q = 0                                                (29) 

4.3.  Least-Squares Problem[1] 

     A Least-Squares Problem is an optimization problem with no constraints and an objective which is 

a sum of squares of terms of the form ai
Tx − bi :  

                       minimize  f x =  Ax − b 2
2 =  (ai

Tx − bi)
2k

i=1                  (30) 

where  A ∈ Rk×n  (with k ≥ n), ai
T  are the rows of A, and the vector x ∈ Rn  is the optimization 

variable. 

Remark(5),[3,4] One special case of the convex quadratic minimization problem that arises very 

frequently is the  Least-Squares Problem. Therefore, the authors usually   used the Least-Squares 

Problem as error function (minimized error function ). 

4.4.  BFGS  Method  and  Minimization  Problem 

     In this section, we discuss BFGS quasi-Newton method for solving the unconstrained convex 

quadratic (Least-Squares) minimization problem 

  minimize  f x =
1

2
xT∇2f x x + ∇f(x)Tx + r                                             (31)  

where ∇2f  is the Hessian of f (which is symmetric positive semidefinite) and ∇f is the gradient of.We 

will assume that the problem(31) is solvable,i.e.,there exists an optimal point x∗. 

Remark(6),[4] If f is a  quadratic(i.e.,differentiable) and convex, we note : 

1) The necessary and  sufficient  condition for the point x∗ to be optimal is  

                                   ∇f x∗ = ∇2f(x∗) x∗ + ∇f(x∗) = 0                                (32)                 

Therefore, the problem (31) can be solved via the optimality condition, ∇2f(x∗) x∗ + ∇f(x∗) = 0 (It is 

clear that the secant condition (13) is a special case of the optimality condition). 

2) If  ∇2f is positive definite,then there is a unique solution                             

x∗ = −(∇2f)−1∇f  .   

Remark(7),[1]:Technique of BFGS Algorithm 

 Usually the problem(31) must be solved by an iterative algorithms such as Newton methods or 

quasi-Newton methods. Solving the problem  (31) by using BFGS quasi-Newton algorithm means 

that the algorithm will computes a sequence of points : x0 , x1 , x2 , …  ∈ dom(f) with f xk → f x∗  as 

k → ∞. Such sequence of points is called a minimizing sequence for the problem (31).The algorithm 

is terminated when   f xk − f x∗ ≤ ϵ, where   ϵ > 0   is some specified tolerance. 

Remark(8),[11] From above we summarized the following : 

1)  If  x∗  is optimal then   ∇f x∗ = 0  .       

2) If  x∗ is optimal then  ∇f x∗ = 0  and  ∇2f(x∗) is positive semi definite. 

3) If  ∇f x∗ = 0  and  ∇2f(x∗) is positive definite   then   x∗ is optimal . 

4) If  f is convex  and x∗ is local optimum   then  x∗  is global optimum . 

5)  If  f is convex and ∇f x∗ = 0    then   x∗  is global optimum . 

4.5.  Initial  Point and  Sublevel  Set [4] 
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BFGS quasi-Newton method require a suitable starting point x0.The starting point must lie in 

dom(f ), and in addition the sublevel set S = {x ∈ dom f  ∶ f x ≤ f x0 }                                                  

must be closed. This condition is satisfied for all  x0 ∈ dom(f ) if the function f is closed,i.e.,all its 

sublevel sets are closed.Continuous function  with dom f  = Rn  are closed, so if  dom f  = Rn , the 

initial sublevel set condition is satisfied by any x0 ∈ Rn  .  

4.6.Line Search  Strategies  and  Descents  Methods[5] 

A line search algorithm searches for decrease in f in a descent direction. To compute the new step 

update in quasi-Newton methods one can use either the line search or the Trust Region 

strategies.These two strategies   have different properties and are best used with specific Hessian 

approximation or inverse Hessian approximation updates. The line search will need the Hessian 

approximation or inverse Hessian approximation to be symmetric and positive definite. 

Trust Region methods overcome the problems that line search methods encounter with non-

symmetric positive definite approximate Hessians. In particular, a Newton Trust Region strategy 

allows the use of complete Hessian information even in region where the Hessian has negative 

curvature ( For more details, see[1,6] ). 

The algorithms described in this work produce a minimizing sequence {xk},k = 1,2, …,where     

                                                              xk+1 = xk + ƞkdk                                   (33)                                   

 where  dk  is a vector in Rn  called the step or search direction, ƞk   is the learning rate ( step length), 

with  ƞk > 0  (except when xk  is optimal). 

Remark(9),[4,5] 

 1) All the methods we study are descent methods, which means that  

                                                 f(xk+1) < f(xk)                                                  (34) 

(except when xk  is optimal).This implies that for all k,we have xk ∈ S (the initial sublevel set),and in 

particular we have xk ∈ dom f .  

2) From the convexity we know that∇f xk T y − xk ≥ 0  implies  f(y) ≥ f(xk) so the search 

direction in a descent method must satisfy  : 

                                                     ∇f xk Tdk < 0                                                 (35) 

We call such a direction a descent direction (For f,at  xk). 

3) The search    directions  in the descent methods are called the line search since selection of the 

step length ƞ determines where along the line x + ƞd the next iterate will be. 

Therefore, the descent direction can be defined as   

  Definition(9),[1] : A vector  d ∈ Rn  is a descent direction for f at x if  :             

                               
df (x+ƞd)

dƞ
 
ƞ=0

= ∇f(x)Td < 0.                                               (36) 

Remark(10),[4]Convex Quadratic Functions with Descent Directions 

Now, we will consider the descent directions based on the convex quadratic models of f of the form 

  m x = f xk + ∇f xk T x − xk +
1

2
 x − xk THk(x − xk )                   (37)  

 where  Hk  is the model Hessian (model Hessian approximation with respect to BFGS quasi-Newton 

method ) is symmetric positive definite.   

We let d = x − xk   be such that m(x) is minimized. Hence 

                  ∇m x = ∇f xk + Hk x − xk = 0                                        (38)     

and therefore, we have 

                                    d = −Hk
−1∇f(xk)                                                       (39)   

The search direction  d in (39) is called the Newton step(for f at xk),also called the quasi-Newton 

direction(with respect to quasi-Newton method).                                        
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Remark(11) The Newton step in eq.(8) (the quasi-Newton direction in eq. (12)) is a descent direction, 

since 

                                               ∇f(x)Td = −∇f(x)THk
−1∇f(xk) < 0                                    

(from positive definiteness of Hk).       

4.6.1. Exact  And  Inexact  Line  Search  Algorithms[2] 

     Line search, also called one dimensional search,refers to an optimization procedure for univariate 

functions. It is the base of multivariable optimization. As stated before, in multivariable optimization 

algorithms, for given  xk , the iterative scheme is            xk+1 = xk + ƞk dk       . 

The key is to find the direction vector  dk  and a suitable step length  ƞk .  

Let      ∅ ƞ = f(xk + ƞdk).                                                                              (40)  

 So, the problem that departs from  xk  and finds a step length in the direction   dk  such that      

                                                ∅ ƞk < ∅(0)                                                   (41)    

is just line search about ƞ. 

Remark(12),[2]: 

1) If we find  ƞk  such that the objective function in the direction dk  is minimized, i.e.,    

                             f xk + ƞkdk =   minƞ>0 f(xk + ƞdk)                                (42)  

  or                          

                          ∅ ƞk =  minƞ>0  ∅ ƞ                                                     (43)  

such a line search is called exact line search or optimal line search, and ƞk  is called optimal step 

length. 

2) If we choose  ƞk  such that the objective function has acceptable descent amount, i.e.,such that 

the descent 

                                                     f xk − f(xk + ƞkdk) > 0                                

is acceptable by users,such a line search is called inexact line search,or approximate line search,or 

acceptable line search. 

3) Since, in practical computation, theoretically exact optimal step length generally cannot be found, 

and it is also expensive to find almost exact step length, therefore the inexact line search with less 

computation load is highly popular ( such as : Wolfe line search, Goldstein line search,backtracking 

line search,etc). 

4) If f is a convex quadratic,   f x =  
1

2
xTQ x + bTx + c, its one-dimensional minimizer along the ray  

xk + ƞdk  can be computed analytically and is given by : 

 ƞk =  − 
∇f xk Tdk

dk
T Q dk

                                                                                                   44   

 

4.6.1.1. BFGS quasi-Newton Method with Wolfe Line Search[1,8]    

     There are many ways to do a line search in a given direction to find an acceptable step length 

ƞk .Some require the Wolfe conditions to be satisfied(eq.45),others require the Goldstein 

conditions(more details in[3,6]).  The most commonly used line search method is to find the step 

length that satisfies the Wolfe conditions. The Wolfe line search conditions ensure that the gradients 

are sampled at points where the model captures important curvature information. 

In this work, we will present some theorems that ensure the convergence of the BFGS quasi Newton 

algorithm with Wolfe line search procedure under strongly convex optimization function. 

We require that the step length ƞk   satisfies  Wolfe conditions  : 

 (𝟏)    f xk + ƞkdk ≤ f xk + c1ƞkdk
T ∇f xk ,                                       
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 (𝟐)   dk
T ∇f xk + ƞkdk ≥ c2dk

T ∇f xk .                                                     (45) 

where  0 < c1 < c2 < 1. 

where the first Wolfe condition is called the general sufficient decrease condition). 

The following theorems ensure the convergence of the BFGS quasi -Newton algorithm with Wolfe 

line search procedure. 

Theorem (4) : Suppose that  f  is  C1 and bounded from below. Then Wolfe  ̓s  line-search terminates 

(i.e., the number of the line-search iterations is finite). 

Proof : see [7], (P. 29).    □   

Theorem (5) : Given  x0 ,  let  f be a convex function, such that   the set {x: f(x) ≤ f(x0)} is bounded 

and such that f  has contiuous second derivatives in this set. Let B0 be any positive definite matrix. 

Then the BFGS method with step length chosen to satisfy the Wolfe conditions generates a sequence 

 xk  for k = 0,1, … such that f xk  for k = 0,1, …  converges to a minimum  of  f. 

Proof : see [5], (P.99).       

Note : If the function  f is  convex and quadratic then  f is bounded from below [1]. 

To derive the Wolfe conditions,it is necessary to present the following theorem : 

Theorem (6) [1] : Let f be twice continuously differentiable function in a neighborhood of a point  

x ∈ Rn . Then for  e ∈ Rn   and  e 2  sufficiently small,        

f x + e = f x + ∇f(x)Te +
1

2
eT∇2f x e + o( e 2

2) 

Remark(13),[2]: The framework of the Wolfe line search procedure is as follows. First, determine or 

give an initial search interval which contains the desirable step lengths ; then employ a bisection or 

interpolation formula to compute a good step length within this interval,i.e.,to reduce this interval 

iteratively until the length of the interval is less than some given tolerance. 

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions for every 

function  f that is smooth and bounded below. 

Theorem (7) : Existence of Acceptable ƞ  

Suppose that  f ∶  Rn  → R is continuously differentiable. Let  dk  be a descent direction at  xk , and 

assume that  f is bounded below along the ray  { xk + ƞdk ∶  ƞ > 0 }. Then if  0 < c1 < c2 < 1,there 

exist intervals of step lengths satisfying the Wolfe conditions. 

Proof : see [2], (P.40).      □   

Wolfe  line search algorithm : 

INITIALIZATION : Choose   0 < c1 < c2 < 1, and set α = 0, ƞ = 1,    and  β = +∞. 

REPEAT 

      If  f x + ƞd > 𝑓 x + c1ƞdT∇f(x), 

                set   β = ƞ   and reset  ƞ =
1

2
 α + β . 

     Else if  dT∇f x + ƞd < c2dT∇f x , 

               set α = ƞ    and reset   ƞ =   
2α,   if β =  +∞

1

2
 α + β ,    otherwise.

  

     Else, STOP. 

End  REPEAT . 

The parameters  c1 and c2  are  typically chosen to be   c1 = 0.0001   and  c2 = 0.9.  (For more 

details, see [2]. 

 

 

4.6.1.2  BFGS  Method with Backtracking  Line Search        .     
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Backtracking line search is very simple line search method and   quite effective. It depends on two 

constants α, β   where α ∈  0,0.5  and β ∈ (0,1).This line search is called backtracking because it 

starts with unit step length and then reduces it by a factor β until the stopping condition 

f xk + ƞkdk   ≤ f xk + αƞk∇f(xk)Tdk    holds. 

Backtracking line search algorithm : 

1)   Given a descent direction dk  for f at x ∈ dom f , α ∈  0,0.5 , β ∈          0,1 . 

2)    ƞk ≔ 1. 

3)    While  f xk + ƞkdk   > f xk + αƞk∇f(xk)Tdk,   ƞk = βƞk . 

The parameter  α  is typically chosen between  0.01 and 0.3 and the parameter  β is often chosen to 

be between  0.1 and 0.8 ( For more details, see [4]). 

5. Global Convergence of  BFGS  quasi-Newton Method[10,11]   

In our analysis of global convergence for BFGS in the context of an inexact line search, we need the 

following assumptions : 

Assumptions     

[1]     The objective function  f  is twice continuously differentiable   

[2]    The level set    Ω = {x ∈ Rn  :f(x) ≤ f(x0)}  is convex, and there exist positive constants   m1 

and  m2   such that  

m1 z 2 ≤ zT∇2f x z ≤ m2 z 2 , for all z ∈ Rn  and x ∈ Ω.                      (46) 

The second assumption implies that the Hessian is positive definite on Ω and that  f  has a unique 

minimizer  x∗ ∈  Ω. 

Also in our analysis of global convergence for BFGS quasi-Newton method, it is necessary to present 

the following lemma : 

Lemma (8) : Let  H be symmetric positive definite with smallest and largest  eigenvalues   0 < λs <

λl. Then for all  z ∈ Rn , 

                       λl
−1 z 2 ≤ zTH−1z ≤ λs

−1 z 2                                                 (47) 

Proof : see[1],( P.41 ).      □ 

Theorem (9) : Global Convergence of BFGS 

Let  B0  be any symmetric positive definite initial matrix, and let  x0 be a starting point for which the 

stated assumptions are satisfied.Then the sequence  {xk} generated by the BFGS method converges 

to the minimizer  x∗ of  f. 

Proof : see [10] .       □ 

6. Results 

In this section we will introduce and prove some important theorems about the convergence of 

BFGS method with Wolfe line search under strongly convex optimization function . 

Theorem(10) : Let f  be a convex and differentiable then :                                           

 ∇f(xk)Tdk > 0    𝑖𝑓𝑓  − dk  is descent direction for f  at xk                     

Proof                                                                                                                            

since f  in eq. (31) is  quadratic function,then f  is differentiable we will prove this theorem by using 

the descent direction in eq.(39),i.e.,by using the Newton step(resp. the quasi-Newton direction)  

                                                   dk = −∇2f xk −1∇f(xk)   

Firstly, suppose that  −dk   is a descent direction  for f  at xk    

Therefore,  we have               

dk = ∇2f xk −1∇f(xk) 

 Then this gives   

                                     ∇f(xk)Tdk = ∇f(xk)T  ∇2f xk −1∇f(xk) > 0                                            
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(From positive definiteness of   ∇2f(xk) ). 

Therefore, we get                   ∇f(xk)Tdk > 0 

 Conversely, suppose that    ∇f(xk)Tdk > 0 

Then this gives                      −∇f(xk)Tdk < 0       

 This implies that             ∇f xk T(−dk) < 0   

 Then by definition(9)                                                                               

we have (−dk)is descent direction for f  at xk .        

Theorem(11) : By successive measurements of the gradient,BFGS quasi-Newton method build a 

quadratic model of the objective function which is sufficiently good that convergence is achieved. 

Proof  

The derivation starts with the quadratic model 

                               mk d = f xk + ∇f(xk)Td +
1

2
dTBkd                         

where Bk  is the Hessian approximation(symmetric positive definite) and d is the quasi-Newton 

direction (eq. 39),     dk = −Bk
−1∇f xk . 

For the equation  

xk+1 = xk + ƞkdk  = xk  - ƞk Bk
-1

 ∇ f(xk), 

we require that the step length ƞk   satisfies the  Wolfe conditions. 

Therefore, for equation, Bk+1 = BK + Bk
U    we get a new model : 

mk+1 d = f xk+1 + ∇f(xk+1)Td +
1

2
dTBk+1d 

 Clearly, for this to make sense we must impose some conditions on the update[8].We impose two 

conditions on the new model     mk+1 d    : 

[1,2]:   mk+1 d   must match the gradient of the objective function in xk  and  xk+1.The second 

condition is satisfied by the construction, since :  

                                              ∇mk+1 0 = ∇f(xk+1)                                                           

(here, 0 is the zero vector). 

The first condition given us : 

∇mk+1 −ƞkdk = ∇f xk+1 − ƞkBk+1dk = ∇f(xk) 

with a little bit of re-arrangement we get : 

                                         ƞkBk+1dk = ∇f xk+1 − ∇f(xk)                     

Now, from the above equation :                                   

Bk+1 ƞkdk = ∇f xk+1 − ∇f(xk) → Bk+1(xk+1 − xk) = ∇f xk+1 − ∇f(xk), 

Then we have the secant condition,   

 Bk+1pk = qk      where     qk = ∇f xk+1 − ∇f(xk) ,  pk  = xk+1 − xk . 

By pre-multiplying the secant equation by qk
T  we see the curvature condition : 

pk = Bk+1
−1 qk   →  qk

T   pk = qk
T  Bk+1

−1 qk, 

since  qk
T  Bk+1

−1 qk  > 0,(from positive definiteness of Bk+1), 

Then this gives 

qk
T   pk > 0    (curvature condition)          

Theorem(12) : If  f  is strongly convex, the curvature condition                     

qk
T  pk > 0    will be satisfied for any two points xk  and xk+1 . 

 

 

Proof  
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Since f  is quadratic strictly convex, then its Hessian (resp.Hessian approximation) is symmetric 

positive definite(i.e.,non-singular matrix). 

By contradiction, if we assume that    qTp ≤ 0 , 

From  secant condition(eq.13), we have 

   Bp = q   →      p = B−1q 

→ qTp = qTB−1q, 

since by assumption   qTp ≤ 0   ,  then we have                                                                                                                                                                                          

 qTB−1q ≤ 0        C!    (since  B−1  is positive definite). 

Therefore, we must have  qTp > 0.         

From theorem(12) we note that the curvature condition holds if we impose another line search 

condition on the quasi-Newton direction. 

Theorem(13) : Global Result 

If  f ∶  Rn → R is strongly convex,BFGS with backtracking line search (resp. with any inexact line 

search )converges from any  x0 ∈ dom(f ) and any initial symmetric positive definite B0. 

Proof   

we will prove that If  f ∶  Rn → R is quadratic strongly convex then the stated assumptions(section 5) 

will always holds, and therefore the global convergence will be satisfied by theorem (9) 

(1)  To prove that  f  is twice continuously differentiable  :  

since  f is quadratic, then  f is differentiable. 

In fact, f is a polynomial of second degree 

Therefore,  f ∶ Rn  → R  is twice continuously differentiable function. 

(2) To prove that  The level set    Ω = {x ∈ Rn  :f(x) ≤ f(x0)}  is convex, and there exist positive 

constants   m1 and  m2   such that  

m1 z 2 ≤ zT∇2f x z ≤ m2 z 2 , for all z ∈ Rn  and x ∈ Ω.     : 

By subsection (4.5), the sublevel set  Ω is exist and satisfied by   any initial point  xo ∈

dom f .  Moreover, since  f  is   convex function, 

 then the level set  Ω is convex                             .                                           

(by definition(4),sublevel set of convex function is convex). 

Since  f is quadratic strongly convex, then its Hessian (resp.Hessian approximation ) is symmetric 

positive definite. 

Therefore, by lemma (8), we get : 

λl
−1 z 2 ≤ zT∇2f(x) z ≤ λs

−1 z 2, for all z ∈ Rn  and x ∈ Ω, 

where λs  and  λl  are  smallest and largest eigenvalues of ∇2f(x)  respectively.  

Now, For the above equation,  

if we replace   λl
−1 by  m1  and  λs

−1 by  m2  

we get  

m1 z 2 ≤ zT∇2f x z ≤ m2 z 2 , for all z ∈ Rn  and x ∈ Ω.           

7. CONCLUSION 

In this work we introduced and proved a number of theorems that ensure the global convergence of 

BFGS quasi Newton method under strongly convex optimization function.We can conclude that By 

successive measurements of the gradient,BFGS quasi-Newton method under inexact line search 

algorithms build a quadratic model of the objective function which is sufficiently good that 

convergence is achieved.For future work one can study the convergence properties of BFGS method 

under another type of optimization functions.   
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