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ABSTRACT 

The prominent focus of this work is to analyze the convective heat transfer 

in a steady boundary layer viscoelastic fluid flow and heat transfer over a 

stretching/shrinking sheet.Three cases were considered here. That is (i)The 

sheet with prescribed surface temperature. (ii) The sheet with prescribed 

surface heat flux. (iii) Convective heating.The governing boundary value 

problem, which is in the form of nonlinear partial differential equations are 

transformed into nonlinear ordinary differential equations, using a suitable 

similarity transformation and are solved numerically using Runge Kutta 

fourth order method with shooting technique.The numerical results for flow 

and temperature field, are found to depend  solidly  on, Viscoelastic 

parameter (k1),Chandrashekar number (Q), thermal radiation parameter 

(Nr),Prandtl number (Pr),wall temperature parameter (s), heat source/sink 

parameter (),Biot number (Bi).  

Key Words:Stretching/shrinking sheet, biot number, PST and PHF cases, 

Thermal Radiation, Chandrashekar number 
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INTRODUCTION 

 Many fluids such as blood, dyes, yoghurt, ketchup, shampoo,paint, mud, clay coatings, 

polymer melts, certain oils and greases etc, have  nonlinear relation between stresses and strains. 

Such fluids do not obey the Newton's law of viscosity and are usuallycalled non-Newtonian fluids. 

The flows of such fluids occur in a widerange of practical applications and have key importance in 

polymer devolatisation, bubble columns, fermentation, composite processing,boiling, plastic foam 

processing, bubble absorption and many others.Therefore, non-Newtonian fluids have attracted the 
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attention ofa large variety of researchers including the interests of experimentalists and 

theoreticians like engineers, modelers, physicists, computerscientists and mathematicians. However, 

as these fluids are inthemselves varied in nature, the constitutive equations which govern them are 

many taking account of the variations of rheological properties.The model and hence, the arising 

equations, are much morecomplicated and of higher order than the well known Navier--

Stokesequations.  

 Study of laminar boundary layer flow caused by a moving rigid surface was initiated by 

Sakiadis [1] and later the work was extended to the flow due to stretching of a sheet by Crane [2]. 

The flow of an incompressible fluid past a moving surface has several engineering applications. The 

aerodynamic extrusion of plastic sheets, the cooling of a large metallic plate in a cooling bath, the 

boundary layer along a liquid film in condensation process and a polymer sheet or filament extruded 

continuously from a die, or along thread traveling between a feed roll and a wind-up roll are the 

examples of practical applications of a continuous flat surface. 

In certain dilute polymer solution (such as 5.4% of polyisobutylenein cetane and 0.83% solution of 

ammonium alginate in water [3,4]),the viscoelastic fluid flow occurs over a stretching sheet. Any 

fluid that does not behave in accordance with the Newtonian constitutive relation is called non-

Newtonian [5–12]. Non-Newtonian fluids have gained considerable importance because the power 

required in stretching a sheet in a viscoelastic fluid is less than when it is placed in a Newtonian fluid; 

and the heat transfer rate for a viscoelastic fluid is found to be less than that of Newtonian fluids 

The central problem in non-Newtonian fluid dynamics is the establishment of expressions for the 

stress tensor T to replace the Newtonian expression. The relation between the stress tensor and 

various kinematic tensors is called the constitutiveequation or the rheological equation of state. 

Rivlin and Ericksenand Coleman and Noll have presented constitutive relations for the stress tensor 

as a function of the symmetric part of the velocity gradient and its higher (total) derivatives.  

 Another class of models is the rare-type fluidmodels, such as Oldroyd model, which has been 

modified by Walters.This modified model is referred to as the Walters’ liquid B. The steady two-

dimensional boundary layer equations for Walters’ liquidB were derived by Beard and Walters [10] 

to first-order in elasticity(i.e., for short memory fluids with short relaxation times).Walters’ liquid B 

considered by Sidappa and Abel [13] exhibit normal stress-differences in simple shear flows. 

Rajagopal et al. [14]analyzed the effects of viscoelasticity on the flow of a second-order fluid with 

gradually fading memory and arrived to the boundarylayer equations as that in Ref. [13]. 

H.I.Andersson[15] considered MHD flow of a viscoelastic fluid past a stretching sheet.An exact 

analytical solution of the governing nonlinear boundary layer equation was obtained illustrating, 

that the effect of magnetic field is same as that of viscoelasticity, on flow and heat transfer 

charecteristics. 

 On the other hand, Abel and Veena [16] investigated a viscoelastic fluid flow and heat 

transfer in a porous medium over a stretchingsheet and observed that the dimensionless 

surfacetemperature profiles increases with an increase in viscoelasticparameter k1, however, later, 

Abel et al. [17]studied the effect of heat transfer on MHD viscoelasticfluid over a stretching surface 

and an importantfinding was that the effect of viscoelasticity is to decrease dimensionless surface 

temperature profiles inthat flow. Furthermore, Char [18] studied MHD flowof a viscoelastic fluid 

over a stretching sheet, however,only the thermal diffusion is considered in the energyequation; 

later, Sarma and Rao [19] analysed the effects of work due to deformation in that equation. 

 However all of the above research dealing with non-newtonian fluids attributes only to the 

most general heat transfer cases of PST and PHF and none of the above problems considered the 

most prominent aspect of convective heating.As a result this research attempts to solve this much 
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more complicated problem involving convective heat transfer in a boundary layer.The effects of 

viscoelastic parameter and Biot number on flow and heat transfer charecteristics is a salint feature 

of this study. 

MATHEMATICAL FORMULATION 

Consider a steady, laminar free convective flow of an incompressible and electrically 

conducting visco-elastic fluid over continuously moving stretching surface embedded in a porous 

medium. Two equal and opposite forces are introduced along the x-axis so that sheet is stretched 

with a speed proportional to the distance from the origin. The resulting motion of the otherwise 

quiescent fluid is thus caused solely by the moving surface. A uniform magnetic field of strength B0 is 

imposed along y-axis. This flow satisfies the rheological equation of state derived by Beard and 

Walters in 1964. 

The steady two-dimensional boundary layer equations for this in usual notation are, 
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Here x and y are respectively the directions along and perpendicular to the surface, u, v are the 

velocity components along x & y directions respectively and other symbols have their usual 

meanings.In deriving the equations, it is assumed, in addition to the usual boundary layer 

approximations that the contribution due to the normal stress is of the same order of magnitude as 

the shear stress.  

The boundary conditions applicable to the flow problem are, 
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b<0 ( Shrinking sheet), b>0( stetching sheet) 

  Equations (1) and (2) admit self-similar solution of the form, 
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where prime  denotes the derivative with respect to  . Clearly u & v satisfy the equation (1) 

identically. Substituting these new variables in equation (2), we obtain, 
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1k and Q  are the viscoelastic parameter and 

Chandrashekar number respectively. 

Similarly boundary condition (3) takes the form 
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HEAT TRANSFER ANALYSIS 

The energy equation in the presence of radiation and internal heat generation / absorption 

for two-dimensional flow is 
2

2
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Where is K thermal conductivity, is heat source/sink, rq is radiative heat flux. 

By using Rosseland approximation , the radiative heat flux is given by  
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Where   and K  are respectively, the Stephan-Boltzman constant and the mean absorption 

coefficient. We assume the differences within the flow are such that T4 can be expressed as a linear 

function of temperature. Expanding T4 in a Taylor series about T  and neglecting higher order terms 

thus,  
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The fluid temperature which is charecterised by fT , heat transfer coefficient h  

And s is wall temperature parameter. 

The similarity transformations are 
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PST  and Convective Case 

Now using equations (13),and(15)  equation (7) becomes 
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are the  Prandtl Number,Radiation parameter and heat source / Sink Parameter respectively. 

PHF CASE 

Now using equations (14),  equation (7) becomes 
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(1 ) Pr Pr ( ) 0Nr g f g f g                                          (17) 

The boundary conditions takes  the form: 

(0) 1, ( ) 0 as       PST Case 

(0) 1, ( ) 0 as                    PHF Case     

  (0) 1 (0) , ( ) 0,  iB as                 Convective Case    (18) 

NUMERICAL SOLUTION 

 Because of the non-linearity and couplings between the momentum and the thermal 

boundary layer equations, exact solutions do not seem feasible for complete set of equations 

(16),(17) and (18), therefore solution must be sought numerically. In order to solve them, we employ 

most efficient shooting technique with fourth order Runge-Kutta integration scheme. 

Selection of an appropriate finite value of   is most important aspect in this method. To 

select  , we begin with some initial guess value and solve the problem with some particular set of 

parameters to obtain (0)f   and (0).  The solution process is repeated with another larger (or 

smaller, as the case may be) value of  . The values of (0)f   and (0)  compared to their 

respective previous values, if they agreed to about six significant digits, the last value of   used 

was considered the appropriate value for that particular set of parameters; otherwise the procedure 

was repeated until further changes in  did not lead to any more change in the values of (0)f   

and (0) . The initial step size employed was h=0.01. The convergence criterion was largely 

depends on fairly good guesses of the initial conditions in the shooting technique. 

RESULTS AND DISCUSSION  

 The present study considers the flow of viscoelastic incompressible electrically conducting 

fluid flow past a stretching/shrinking sheet in prescence of Magnetic field, uniform heat source/sink 

and convective heat transfer.The aim of the following discussion is to bring about the effect of 

magnetic field, heat source /sink, and convective heat transfer over stretching/shrinking sheet on 

flow and heat transfer charecteristics. 

 In Fig (1) it is noticed that the effect of Chandrashekar number Q is to accelerate motion in 

case of shrinking sheet.This is due to the fact that the prescence of viscoelasticity contribute to 

stored energy by obstructing energy loss, as one is aware of the fact that in viscoelastic fluid flows, a 

fixed amount of energy is stored up in the material as stored energy. Because of this the resistive 

force due to magnetic field is overcome , resulting in enhancement in magnitude of velocity. Where 

as in case of stretching sheet the effect of Q is to retard flow velocity within the boundary layer. 

Fig 2 is  a graph concerns to the effect of viscoelastic parameter k1 on flow velocity for both  

stretching/shrinking sheet.Here this Fig 2 depicts that for an increase in viscoelastic parameter k1 

results in decrease of velocity in boundary layer in case of shrinking sheet. This result is consistent 

with the fact that the introduction of tensile stress due to visco-elasticity cause transverse 

contraction of the boundary and hence velocity decreases. Where as  for stretching sheet the 

opposite effect is noticed.  

 The effect of Prandtl Number(Pr) is analysed in view of Fig 3, for both PST as well as PHF 

cases.This figure illustrates that increase in Prandtl Number(Pr) results in decrease of temperature 

distribution in thermal boundary layer region, which obviously a means for decrease of boundary 

layer thickness.Decrease of boundary layer thickness results slow rate of thermal diffusion.It is also 
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noticed that wall temperature distribution is at unity in case of PST , where as in PHF case it  is  other 

than unity, due to adiabatic boundary condition. 

       The effect of Chandrashekar number  Q, on heat transfer is depicted in Fig. 4 in case of PST 

and PHF respectively. Here it is noticed that the contribution of transverse magnetic field, is to 

thicken thermal boundary layer. This is due to  the fact the applied transverse magnetic field 

produces a body force, in the form of Lorentz force, which enhances temperature distribution in 

flow region.The enhancement in temperature distribution in flow region is because of resistance 

offered by Lorentz force on flow velocity.  

 Fig 5 shows the effect of viscoelastic parameter K1 on temperature profile, and it is noticed 

that Temperature profile increases with the increase of viscoelastic parameter K1, in both PST and 

PHF cases. 

 An increase in temperature distribution due to the presence of elastic elements may be 

attributed to the fact that when a viscoelastic fluid is in flow, a certain amount of energy is stored up 

in the material as strain energy, which is responsible for enhancement of temperature distribution in 

thermal boundary layer region. 

 Fig 6  reveals the influence of radiation parameter Nr on temperature profile, where in it 

produces a significant increase in the thickness of thermal boundary layer, resulting in enhancement 

of temperature in thermal boundary layer region in both PST and PHF cases.The prominent effect of 

Nr is to enhance heat transfer,therefore Nr shold be kept at minimum value to fecilitate the cooling 

process of polymer extrudate in polymer industry. 

 The influence of wall temperature parameter s for both PST as well as PHF cases on 

temperature distribution is depicted in Fig 7. Numerical solutions are sought in the range of values of 

s as mentioned follows,i.e -2.0 s2.0   and -2.0 s2.0 for PST and PHF cases. 

Here we notice that as the value of s is incremented from negative values to positive values, 

temperature distribution decreases in thermal boundary layer. 

 The effect of heat source/sink parameter  on temperature profile within the boundary 

layer is depicted in Fig 8.In this figure it is noticed that the direction of heat transfer depends on 

temperature difference )( TTw  and dimensionless rate of heat transfer (0)  . 

 To interpret the heat transfer result physically, we discuss the result of positive   and 

negative   separately. For positive  , we have a heat source in the boundary layer when TTw  

and heat sink when TTw . Physically, these correspond, respectively, recombination and 

dissociation within the boundary layer. For the case of cooled wall ( TTw ), there is  heat transfer 

from the fluid to the wall even without a heat source. The presence of heat source )0(   will 

further increase the heat flow to the wall.  

 When  is negative, this indicates a heat source for TTw  and a heat sink for TTw . 

This corresponds to combustion and an endothermic chemical reaction. For the case of heated wall (

TTw ), the presence of a heat source )0(   creates a layer of hot fluid adjacent to the surface 

and therefore the heat from the wall decreases. For cooled wall case ( TTw ), the presence of heat 

sink )0(   blankets the surface with a layer of cool fluid and therefore heat flow in to the surface 

decreases. 

 The effect of Biot number Bi on temperature profile is depicted in fig 9. Here it is noticed 

that an increase in biot number Bi results in increase in rate of heat transfer in thermal boundary 

layer region.Further it is noticed that there is increase in  thickness of thermal boundary layer . 
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Concluding Remarks 

 The governing boundary layer equations of flow and heat transfer for a steady,  flow of an 

incompressible and electrically conducting visco-elastic fluid over continuously moving stretching 

surface with combined effect of thermal radiation and convective heating is analysed. The governing 

boundary value problem , which is in the form of nonlinear partial differential equations are 

converted into nonlinear ordinary differential equations and are solved numerically using Runge-

Kutta fourth order method with shooting technique.. Numerical evaluations were performed and 

graphical results were obtained to demonstrate the details of flow and heat transfer characteristics 

and their dependence on some of the physical parameters.  

The important findings of our investigations are 

 The increase of Chandrashekar number leads to the enhanced deceleration of the flow and 

hence the velocity decreases but increases temperature in the boundary layer. 

 The effect of  increase in Viscoelastic parameter 1k leads to decrease the horizontal velocity 

profile but increase the temperature in the boundary layer. 

 The effect of heat source in the boundary layer generates energy, which causes the 

temperature to increase while the presence of heat absorption effects caused reductions in 

the fluid temperature, which results in decreasing the fluid velocity, in both PST and PHF 

cases. 

 The effect of thermal radiation parameter Nr produces a significant increase in the thickness 

of the thermal boundary layer of the fluid and so as the temperature increases in presence/ 

absence of thermal conductivity parameter, in both PST and PHF cases. 

 An increase in biot number Bi results in increase in rate of heat transfer in thermal boundary 

layer region, resulting in increase of  thickness of thermal boundary layer . 

 

 

Figure 1: Plot of axial   f   velocity  versus   for  different values of Chandrasekhar number Q  

with K1 = 0.2.  
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Figure 2: Plot of axial velocity versus   for different values of viscoelastic parameter K1  with Q =1. 

 
Figure 3:Variation of the non-dimensional temperature  with   the transformation co-ordinate 

normal to the surface for different values of Prandtl number Pr for the cases  PST and PHF. 
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Figure 4:Variation of the non-dimensional temperature  with   the transformation co-ordinate 

normal to the surface for different values of Chandrasekhar number Q for the cases  PST and PHF. 

 
Figure 5:Variation of the non-dimensional temperature  with   the transformation  

co-ordinate normal to the surface for different values of viscoelastic parameter K1 for the cases  PST 

and PHF. 
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Figure 6:Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface for different values of radiation parameter Nr for the  cases  PST and PHF. 

 
Figure 7:Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface for different values of wall temperature parameter s for the  cases  PST and 

PHF. 

 Nr = 0, 1, 2, 3, 4 
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Figure 8:Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface for different values of heat source parameter NI for the  cases  PST and PHF. 

 
Figure 9:Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface for different values of Biot number Bi for the  cases  PST and PHF 
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