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ABSTRACT 

The classification themes allows us to work on low-dimensional manifolds 

for certain curvature related problems. In this paper such an attempt is maid 

by surveying some problems with new insights.  
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1.  INTRODUCTION 

 In this note we give some highlights of curvature which is an important geometric attribute. 

The modern theory of differential geometry emphasizes the importance of curvature on many ways. 

We come across the problem of determining the global features of the manifold which unless one 

thrice to know the topology of manifolds with specified curvature values, it will not be to the 

complete understanding of the manifolds. For instances, the complete three dimensional manifolds 

with positive scalar curvature. The topology over determine. 

In case of complete manifold of dimensional greater than three are Schoen and S.T.Yau of 

give the first result. On structure of manifold with positive scalar curvature. Later on Gromov-

Lawson provided some of this results using the arguments of harmonic spinners. This generalized 

the workshop Lichnerowicz [4] and Hitchin[3]. These works enabled you and Schoen to come we the 

complete understanding of such manifold with positive scalar curvature. 

To give an account of these exploitation. We cities the following results due to them. 

Theorem 1: Let M be a complete orientable three dimensional manifold with scalar curvature 1

.Then we can write M as an increasing union of compact subdomains  1 , each of which is 

diffeomorphic to the complement of ‘S’ finite number of disjoint balls of a three-dimensional 

manifold of the from M1#M2#,.......,#Mk,  N1,…..,Nk, where “ # ” means connected sum, M1 = S2 ×   S1 

and Ni is a compact three-dimensional manifold with finite fundamental group. 

     We say that it is a conjecture in topology that a compact three-dimensional manifold with finite 

fundamental group is a spherical space from. If this conjecture is true, theorem 1 gives a complete 
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classification of complete three-dimensional manifold with scalar curvature 1  . The last 

assumption can be replaced by requiring only scalar curvature 0 . Under this weaker assumption, 

we have to allow handle bodies as possible connected summands in the above theorem. In this way, 

we can even allow our three-dimensional manifold to have compact boundaries whose mean 

curvature is nonnegative with respect to the outward normal. 

As a consequence of the theorem in [9], we can also prove the following proposition which 

will be used in understanding manifolds with positive scalar curvature in higher dimension. 

Proposition: Let M be a complete three-dimensional manifold with scalar curvature 1 . Then we 

can write M as an increasing union of compact sub-domains  1  so that each component of  1  

has an area less than some constant C which is independent of i. 

Theorem 2:  Let M be a complete three-dimensional manifold which is connected at infinity. If the 

scalar curvature of M is greater than one, then there exists no distance-increasing map from the real 

line into M. 

All of the above theorems have a finite version, i.e., we do not have to assume that M is 

complete and the conclusion is focused on the part of M which is not close to M . 

When  M > 3, we proved the following theorem quite a while ago. 

Theorem 3: Let M be a compact manifold with positive scalar curvature. Then M cannot be 

represented as a homology class in a compact manifold with non-positive sectional curvature. 

We proved this theorem by following our arguments in [8] using minimal hyper surfaces. We 

note that the technical assumption of dimensions 7  in [8] was dropped by us a few years ago. 

Independently, Gao, in his Stony Brook thesis, was able to prove Theorem 3 following an argument 

of Gromov-Lawson. Some special cases of the following two theorems were also obtained by 

Gromov-Lawson independently. 

2. Curvature Manifestation 

In this section we will give a simple exploitation to presence of curvature from the 

differential geometry point of view. We know that the real n-dimensional Euclidean space Rn are 

the familiar example of smooth manifolds. The Euclidean metric in Rn will enable us to develop 

geometry by introducing co-ordinates. This Euclidean geometry is a model with curvature being 

zero. The situation dramatically changed with presence of curvature. We are going to examine this 

fact. We recall few definitions with regard to basic topological space and function define on them. 

Definition: Let X be a topological space a family  :U   of open sets (each U  open) is said to 

be an open cover of X if  UX   .  

Definition: The topological space X is said to be compact if every open cover of X has a finite 

subcover. 

If  :U  is a family of open cover for X then a subcover is a family  :V   of  

 :U   whenever   VU    for each    and for  1 ≤ 𝑖1 < 𝑖2 < ⋯⋯ < 𝑖𝑘 = 𝑛  if 

 ni iVX
.....1

  then for each such a finite subcover we say that X is compact. 

Example of compact topological space  : 

1. The [a, b] in R is compact. 

2. The unit circle 𝑆1 = { 𝑥 , 𝑦 ∈ R2 / 𝑥2 + 𝑦2 = 1}. 

3. The sphere 𝑆2 = { 𝑥 , 𝑦 , 𝑧 ∈ R3 / 𝑥2 + 𝑦2 + 𝑧2 = 1} is compact.  

However, the real line R, the plane R2, the space R3 are not compact. 
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Interestly, the compact sets in the example give above are the subsets of  R  the real line, the plane 

R2 and the space R3.  

Topologically the [a, b] the unit circle S1 and the unit sphere S2 are different from R ,R2 ,R3. 

This topological distances lead to the classification problems of the spaces up to 

homomorphism. We will precisely explain this fact in our following description. 

For a case of 1- dimensional spaces we have seen that the R and the unit circle S1 or not 

homomorphic by this we mean there is no continuous map from S1 into the real line R whose inverse 

is also continuous map. Thus if X is a 1- dimensional spaces then X is either homomorphic to the real 

line R or homomorphic to the circle S1.i.e., 

𝑋 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  𝑋 ≅  𝑎 , 𝑏  

𝑋 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  𝑋 ≅ R 

What about the case of two dimensional spaces? 

If X is a 2-dimensional space. 

We have seen this in one of our example S2, the unit sphere which is two dimensional and compact. 

Now, the plane R2 is also 2- dimensional, but it is not compact. 

Therefore, S2 and R2 are different as topological spaces. So, if X is 2- dimensional and 

compact then X  ≅ S2  this is one sonorous, and if X is not compact then X ≅ R2.  

X is a not compact. 

If X is a 2-dimensional space of compact the X  ≅ S2 or S2  with n-handles  if X is as compact the X ≅

 R2, S2  R3, t2  R3 or R4 observe that 

As subset they are all compact for by R, R2,………, Rn  are non-compact. 

As quotient spaces, topology on S1,S2 and t2 are induced topology of R and R2 respectively. 

We also provide a brief description of differentiable structure on S1 and S2, with that 

differentiable structure they become differentiable manifolds.  

a) differentiable structure a S1 

Recall the definition of a smooth (differentiable) manifold and its atlas description for S1, we will give 

these details. 

If n = 1, and since S1 is connected from the very definition, as a manifold it is compact and 

connected. The atlas for S1 contains only two charts. We shall write them as           ( 𝑈, 𝑓) and ( 𝑉, 𝑔) 

where 𝑈, 𝑉, 𝑓 and 𝑔 are determined as follows: We define 𝑓−1, as a map from the open interval ( 0 , 

2𝜋) into S1, by )sin,(cos   that is, .)2,0(: 11 Sf   is a local diffeomorphism. 

i.e., 𝑓−1 is continuous, invertible and is therefore homomorphism. 

We take the open set )}0,1{(1  SU  

Thus, we have defined 𝑈 and 𝑓 

Next, we shall define 𝑉 and 𝑔 for this, we take 𝑔−1, here it differs from 𝑓−1  in the sense, instead of  

( 0 , 2𝜋). We take (−𝜋, 𝜋). The definition for 𝑔−1 is same as that of 𝑓−1 given earlier. Thus we here , 

𝑔−1:  −𝜋 , 𝜋 → 𝑆1  as )sin,(cos   . 

The image of 𝑔−1 −𝜋 , 𝜋  in S1 is the set 𝑆1 − {(−1, 0)}. This gives as V and g. Further, with that 

𝑈 ∪ 𝑉 = S1. Thus, the structure { ( 𝑈 , 𝑓) 𝑎𝑛𝑑 ( 𝑉, 𝑔 )} from a smooth atlas on S1 and S1 becomes a 

smooth manifold of dimension one. 

For higher dimension examples, one can as well take the cartesian product of the lower dimensional 

manifolds. Since R and S1 are one-dimensional manifolds. 

R R,  S1
 S1 , R × R × ⋯⋯ × R           

𝑛 𝑡𝑖𝑚𝑒𝑠

 ,                𝑆1 × 𝑆1 × ⋯⋯ × 𝑆1             
𝑛 𝑡𝑖𝑚𝑒𝑠

 

give high dimensional manifolds as examples. 
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                 Thus,  R × R × ⋯⋯ × R           
𝑛 𝑡𝑖𝑚𝑒𝑠

 = Rn is an n-dimensional manifold and                  

𝑆1 × 𝑆1 × ⋯⋯ × 𝑆1             
𝑛 𝑡𝑖𝑚𝑒𝑠

 = tn  is an n-dimensional manifold. 

b) We shall respect to S1
 S1 which is a torus t2, as a manifold, it is smooth two-dimensional compact 

manifold. We will not go into the definite of providing the smooth atlas description of the manifold. 

c) the sphere 𝑆𝑛 , as an n-dimensional manifold is not a product of a one - dimensional manifolds. 

We have noticed that these manifolds arise quite naturally and are seen every where. In fact 

whenever one deals with differentiable function of one or more real or complex variables there is 

usually a manifold in which these function are defined. 

We conclude this section in the notion of orientability for manifolds. 

 Orientability has its genesis in the properties of surface, two-dimensional manifolds in R3 . 

For instance, a disc give by 𝑥2 + 𝑦2 ≤ 𝑎2 , 𝑧 = 0 which is a surface has a top-side and a bottom-side. 

Where as in case of a sphere S2 (example 1,2,3) it has an inside and outside. Same is the case with 

the torus t2 such two indeed surfaces are called orientable. Since we can use their two sidedness to 

define orientations or directions in the R3.  

For the disc, the unit normal n to the surface has two possible directions from top to bottom 

as far bottom with top corresponding to 𝑛 = ±𝐾. Similarly, the sphere S2 has two normal direction 

at each part inward or outward pointing normal 𝑛 = ±𝑒𝛾  where 𝑒𝛾  is a unit vector in the normal 

direction. 

 However, if the surface has not got two sides, then we are into difficulty the properties of 

the surface will not help us to define orientation on such one indeed surface. We avoid this 

orientation. 

Having got clarity about orientability of the two dimensional manifolds one would generalise 

this concept for manifolds of any dimension. This fact will be described now non-orientability change 

the direction for a normal at a point with a fixed orientation. This is the case with the Mobins strip. 

To this end consider a vector space V with two bases },.......,{ 1 nee  and },.......,{ 1 nee   of V. 

Let M be the matrices which performs the change of basis. 

,ii Mee     ni ,,.........1    (**) 

the determinant connected with M it is also called the Jacobins determinant. 

 Then from (**), the determinant of M is either 0 or 1, side M is invertible ( M most be 

invertible). 

 If the determinant M > 0 then we say this }{ ie  and }{ ie . If determine n < 0, then the bases  

}{ ie  and }{ ie  are said to be opposite orientation. 

For example, },,....,{},.......,{ 111 nnn eeeee 
  

So that the corresponding metric M given by 





























1

0

1
0

1

1


M  

and its determinant is -1 

or },,,....,,{},.......,{ 12211 nnnn eeeeeee 
  
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then determinant open matrix given by 



































1

1

0

1

1

01

M  

has det = 1. 

Thus this set of all bases for V is divided into two exponential classes: each class is transformed into 

itself by matrices is transformed into the other by matrices of negative determinant. 

 Suppose we have curve 𝛾: 𝐼 → Rn , and we wish to know the history of the system of                      

K-particles in Rn. Is there a relation that ensures us to know this fact such problems are if they are 

physically in relative system of differential equations, with initial condition, determined by the 

position and movements of there particles in space. The geometry of the space and attributes like 

curvature (associated with the curves / surfaces or integral an hyper surface) curve to fore. In our 

study we first by to understand this geometric driven problem. The following is a particular 

description for a 3- dimensional need Euclidean space. 

 Let K particular move in R3 under the known  forces. Suppose that the state of the system of 

there K-particle at a given time is determined by knowing the position and momentum of each 

particle. 

Thus, at a given time the system is determined by a point in R6k 

The different equation giving the system is the Hamilton equation 
𝑑𝑞 𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝑝 𝑖
,          

𝑑𝑝 𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝑞 𝑖
() 

if ( ) is solved uniquely for a given initial condition, then we get the entire history of the system 

determined by a curve in R6k to this end let us recall the group action on manifolds. similarly, such 

group action on spaces are of interest if they presence the structure of the manifold (or space). 

Topological structure would export the qualitative property of action of groups on space, measure 

theoretic and smooth structure are structure conditions of the group action on spaces. 

 Each element of the group acts as a transformation on the space and presence the given 

structure. In above context we have cited the motion of K-particles in R3. Suppose the group R action 

on R3, thus for each real t ∈ R, (a time parameter) we have a map tt: R
6k→ R6k. Thus, a family of 

transformation { tt : t ∈ R}  of the state space. 

 If x is a point in the state space representing the system of a time to, then tt(x) we shall 

denote the point of the state space representing the system at time  𝑡 + 𝑡0. 

 Then, we see that tt is a transformation of the state space and 𝑇𝑜 = 𝑖𝑑 and 𝑇𝑡+𝑠 = 𝑇𝑡  𝑜 𝑇𝑠 . 

 Thus, 𝑡 → 𝑇𝑡  determine the action of the group R on the state space we know that, the 

Hamilton H is constant along solution curves, each energy surface 𝐻−1(𝑒) is invariant for the 

transformation tt. 
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