
61 

 

 

  

 
    

 
 
 

A SINGLE SERVER  NON-MARKOVIAN BERNOULLI VACATION QUEUE WITH TWO 
TYPE OF SERVICES AND WITH AN OPTIONAL SERVICE  

 
KALYANARAMAN. R 

 Department of Mathematics, Annamalai University, Annamalainagar-608 002, India. 
 email: r.kalyan24@rediff.com 

 

 

ABSTRACT 

A single server queue with two type of services and with Bernoulli vacation 

has been considered. The type 1 service is a phase type service with two 

service phases. Both the service time distributions are generally distributed. 

The type 2 service has only one phase of service. In addition the server also 

provides an optional service. These service time distributions are also 

general. After completion of service, the server takes vacation based on a 

Bernoulli process and vacation time distribution is general. For this model the 

probability generating function for the number of customers in the queue at 

different server's state are obtained using supplementary variable technique. 

Some performance measures and particular models are calculated and 

numerical results are presented.  

Keywords: Phases service – Optional service – Bernoulli process – 
Supplementary variable technique – Vacation – Performance measures. 
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1.  INTRODUCTION 

 Queueing systems constitute a key tool in modelling and performance analysis of 

telecommunication systems and computer systems. Poisson arrivals are in many cases a fairly 

realistic model for the arrival process, but exponential service times are not very common in 

practice. In many systems the coefficient of variation of the service times will be smaller (or greater) 

than 1. Therefore, it is essential to analyze the models with generally distributed service times. Due 

to this reason the 1//GM queue has been studied in various forms by numerous authors including 

Gaver (1959), Keilson and Kooharian (1960), Bhat (1964), Prabhu (1965) and Cohen (1969), to 

mention a few.  

     Recently there have been several contributions considering queueing system of the 

1//GM  type, in which the server may provide services in phases. The motivation for such type of 

model comes from some computer and communication networks, where messages are processed in 
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two stages by a single server. The case where both phases of service are exponentially distributed is 

the so called coxian distribution. Bertsimas and Papaconstantinou (1988) considered such 

distribution to design a multi server queue with application in a transportation system. 

    The queueing system with two phase service have studied by Krishna and Lee (1990). Doshi 

(1991) has extended the two phase queueing system of  Krishna and Lee into case of batch. Recently 

Artalejo and Choudhury (2004) have studied the steady state analysis of an 1//GM queue with 

repeated attempts and two phase service.   

    In day to day life, one encounters numerous queueing situations in which all the arriving 

customers are given the essential service and only some of them may require additional optional 

service. Such a model was studied by Madan (1994). The other works to be noted here are Madan 

(2000), Medhi (2002), Al-Jararah and Madan (2003), Jinting Wang (2004), Kalyanaraman et al. (2005) 

and Jau-Chuan (2008).  

 In real life, where as soon as the server becomes free, the server shut down the service 

facility temporarily for a random period of time and thus the server may not be available when the 

customer arrives to an empty queue, the service starts only after the server returns to the queue. 

This random period is called vacation period and the queue is called a vacation queue. Miller (1964), 

first studied a model, where the server is unavailable for service during some random length of time 

for the M/G/1 queueing system. Bernoulli vacation model at each service completion epoch the 

decision to take a vacation depends on a Bernoulli distribution. This type of vacation policy was first 

introduced by Keilson and Servi (1986). 

    The paper is organized as follows: The corresponding mathematical model is defined in 

section 2 and the governing differential difference equations, the boundary conditions and the 

normalizing condition are given in section 3. For this model the probability generating function of 

the number of customers in queue irrespective of the server state are derived in section 4. Also 

some performance measures related to this queueing model are derived from these probability 

generating functions and are given in section 5. In section 6, some particular models are derived. A 

numerical study is carried out in section 7.   

2.  The Model  

 The arrival follows Poisson with rate )0(  and a single server provides two type of 

services, respectively called type 1 service and type 2 service. Also the server provides an optional 

service. The entering customers selects type 1 service with probability p  or type 2 service with 

probability .1 p  The type 1 service is a phase type service (two phases). After completion of type 1 

service, the customer leaves the system, whereas after completion of type 2 service, the customer 

leaves the system with probability r1 or choose an optional service with probability .r After 

completion of optional service, the customer leaves the system. The service time distributions are 

general, the distribution functions are ),(,1 xB j
for type 1 and thj  phase of service ),2,1( j

),(1,2 xB  for type 2 service, ),(2,2 xB  for an optional service. The Laplace- Stieltjes transform (LST) 

for )(, xB ji
is )(*

, jiB  and finite thk  moments are .2,1,,1),( ,  jikBE k

ji   

   After completion of each service the server may go for a vacation of random length with 

probability q  )10(  q  or may continue to serve the next customer, if any, with probability 

).1( q  If there are no customers in the queue, at the completion of vacation, the server remains in 

the system without taking further vacation.   Vacation time distribution is also a general distribution 



Bull .Math.&Stat.Res  ( ISSN:2348-0580)  

   63 

Vol.4.Issue.3.2016 (July-Sept.,) 

KALYANARAMAN. R 

with distribution function ),(xV  Laplace- Stieltjes transform (LST) for )(xV  is )(* V  and finite 

moments are .1),( kVE k   

      It may be noted that )0)0(,1)(,0)0(,1)((),(),( ,,,  VVBBxVxB jijiji
are 

continuous, so that ))((,)(, dxxdxxji   are the first order differential functions (hazard rates) of 

)).((),(, xVxB ji
     

     For the analysis the supplementary variable (the variable is elapsed time) technique has 

been used.  

    Let dxxj )(,1  be the conditional probability of completion of the thj  phase of type 1 

service during the interval ],,( dxxx   given that elapsed service time is x  so that 

)2,1(,
)(1

)(
)(

,1

,1

,1 


 j
xB

xb
x

j

j

j  and let dxxj )(,2  be the conditional probability of completion of 

the type 2 service and optional service during the interval ],,( dxxx   given that elapsed service 

time is x  so that )2,1(,
)(1

)(
)(

,2

,2

,2 


 j
xB

xb
x

j

j

j  and let dxx)( be the conditional probability of 

completion of the vacation during the interval ],,( dxxx   given that elapsed vacation time is x  so 

that  .
)(1

)(
)(

xV

xv
x


  

The following notations are introduced to define the model mathematically: 

𝑃𝑛
 1,𝑗   𝑥, 𝑡 = Pr⁡{at time 𝑡, there are 𝑛 customers in the queue excluding one in the type 1 service 

and is in the 𝑗th phase of service and the elapsed service time is 𝑥},  𝑗 = 1, 2, 𝑛 ≥ 0, 𝑃𝑛
 2,1  𝑥, 𝑡 =

Pr⁡{at time 𝑡, there are 𝑛 customers in the queue excluding one in the type 2 service and elapsed 

service time is 𝑥}, 𝑛 ≥ 0, 𝑃𝑛
 2,2 

 𝑥, 𝑡 = Pr⁡{at time 𝑡, there are 𝑛 customers in the queue excluding 

one in the optional service and elapsed service time is 𝑥}, 𝑛 ≥ 0 and 

𝑉𝑛 𝑥, 𝑡 = Pr⁡{at time 𝑡, the server is on vacation with elapsed vacation time is 𝑥 and the number of 

customers in the queue is 𝑛}, 𝑛 ≥ 0. 𝑄 𝑡 = Pr⁡{at time 𝑡, there are no customers in the system and 

the server is idle}.  

   Let )(),( xP ji

n
),2,1,( ji  )(xVn  and Q  denote the corresponding steady state 

probabilities.  

 The probability generating functions for the probabilities    )(),2,1,(,)(),( xVjixP n

ji

n   are 

respectively defined as 

)(),( ),(

0

),( xPzzxP ji

n

n

nji 




  and ).(),(
0

xVzzxV n

n

n




  

3.  The Governing Equations 

     The differential difference equations related to the model defined in the proceeding section 

are 

0)())(()( )1,1(

01,1

)1,1(

0  xPxxP
dx

d
          (1) 

1);()())(()( )1,1(

1

)1,1(

1,1

)1,1(   nxPxPxxP
dx

d
nnn          (2) 
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0)())(()( )2,1(

02,1

)2,1(

0  xPxxP
dx

d
          (3) 

1);()())(()( )2,1(

1

)2,1(

2,1

)2,1(   nxPxPxxP
dx

d
nnn         (4) 

0)())(()( )1,2(

01,2

)1,2(

0  xPxxP
dx

d
          (5) 

1);()())(()( )1,2(

1

)1,2(

1,2

)1,2(   nxPxPxxP
dx

d
nnn         (6) 

0)())(()( )2,2(

02,2

)2,2(

0  xPxxP
dx

d
          (7) 

1);()())(()( )2,2(

1

)2,2(

2,2

)2,2(   nxPxPxxP
dx

d
nnn         (8) 

0)())(()( 00  xVxxV
dx

d
           (9) 

1);()())(()( 1   nxVxVxxV
dx

d
nnn         (10) 









 


0

2,2

)2,2(

0

0

1,2

)1,2(

0

0

2,1

)2,1(

0 )()()()()1()()()1( dxxxPdxxxPrdxxxPqQ 

 

       



0

0 )()( dxxxV            (11) 

  The boundary conditions are 

 



0

2,2

)2,2(

1
0

1,2

)1,2(

1
0

2,1

)2,1(

1

)1,1(

0
)()()()()1()()()1()0( dxxxPdxxxPrdxxxPpqpQP               





0

1 )()( dxxxVp           (12) 









 












0

2,2

)2,2(

1

0

1,2

)1,2(

1

0

2,1

)2,1(

1

)1,1( )()()()()1()()()1()0( dxxxPdxxxPrdxxxPpqP nnnn 

 

             1,)()(
0

1  


 ndxxxVp n          (13) 

0,)()()0( 1,1

0

)1,1()2,1(  


ndxxxPP nn          (14) 









 


0

2,2

)2,2(

1

0

1,2

)1,2(

1

0

2,1

)2,1(

1

)1,2(

0 )()()()()1()()()1)(1()0( dxxxPdxxxPrdxxxPpqP      

             



0

1
)()()1()1( dxxxVpQp                (15)       









 












0

2,2

)2,2(

1

0

1,2

)1,2(

1

0

2,1

)2,1(

1

)1,2( )()()()()1()()()1)(1()0( dxxxPdxxxPrdxxxPpqP nnnn   

             1,)()()1(
0

1  


 ndxxxVp n         (16) 
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0,)()()0( 1,2

0

)1,2()2,2(  


ndxxxPrP nn         (17) 

0,)()()()()1()()()0( 2,2

0

)2,2(

1,2

0

)1,2(

2,1

0

)2,1(  


ndxxxPqdxxxPqrdxxxPqV nnnn   (18) 

and the normalization condition is 

  1)()()()()(
0 0

)2,2()1,2()2,1()1,1( 






dxxVxPxPxPxPQ
n

nnnnn     (19) 

4. The Analysis 

 Multiplying equations (2), (4), (6), (8) and (10) by ,nz  summing from 1n  to  and then 

adding (1), (3), (5), (7) and (9), we get 

)(
),(

),(

,),(

),(

xs
zxP

zxP
dx

d

jiji

ji

          (20) 

)(
),(

),(

xs
zxV

zxV
dx

d

          (22) 

where )1( zs    and .2,1, ji       

    Integration of the equations (20) and (22) leads to 
sx

jiji

ji exBCzxP  ))(1(),( ,,

),(
        (23) 

sxexVCzxV  ))(1(),(          (24) 

   Taking 0x  in equations (23), (24), the constants ,, jiC  ),2,1,( ji C  are obtained as 

),0(),(

, zPC ji

ji            (25) 

),0( zVC             (26) 

   Using equations (25), (26) in (23), (24), we get 
sx

ji

jiji exBzPzxP  ))(1)(,0(),( ,

),(),(
       (27) 

sxexVzVzxV  ))(1)(,0(),(         (28) 

  Multiplying equations (13), (16) by ,nz  summing from 1n  to ,  adding (12), (15), using (11), 

(27) and (28) with the corresponding equation, we get 

 ),0()()1(),0()()1(),0()()1(),0( )1,2(*

1,2

)2,1(*

2,1

*)1,1( zPsBrzPsBqpzVspVQzpzzP  

       ),0()( )2,2(*

2,2 zPsB         (29) 

),0()()1()1)(1(),0()]()1)(1)(1([ *)1,2(*

1,2 zVsVpQzpzPsBrqpz    

                                                               ),0()(),0()()1)(1( )2,2(*

2,2

)2,1(*

2,1 zPsBzPsBqp     (30) 

   Now multiplying equation (14) by ,nz  summing from 0n  to  and using equation (27),  

),0()(),0( )1,1(*

1,1

)2,1( zPsBzP           (31) 

  Performing similar operation on equations (17) and (18), we obtain 

),0()(),0( )1,2(*

1,2

)2,2( zPsrBzP          (32)
 

),0()(),0()()1(),0()(),0( )2,2(*

2,2

)1,2(*

1,2

)2,1(*

2,1 zPsqBzPsBrqzPsqBzV    (33)
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  Using equations (31)-(33) in (29), (30), we get 

))(1)(()1(),0())](1)(()([ *

2,2

*

1,2

)1,1(**

2,1

*

1,1 srBrspBQzpzPsqVqsBspBz  
 

                                                                               ),0())(1( )1,2(* zPsqVq     (34)
 

)()1()1)(1(),0())](1))((1)(()1([ *

1,1

)1,2(**

2,2

*

1,2 sBpQzpzPsqVqsrBrsBpz  
 

                                                                               ),0())(1)(( )1,1(**

2,1 zPsqVqsB    (35) 

  From equations (34) and (35), we get 

)(

)1(
),0()1,1(

zD

Qzp
zP





         (36) 

)(

)1)(1(
),0()1,2(

zD

Qzp
zP





         (37) 

where ))](1)(()1()()())[(1()( *

2,2

*

1,2

*

2,1

*

1,1

* srBrsBpsBspBsqVqzzD   
 

  Using equations (36), (37) in (31), (32), we get 

)(

)()1(
),0(

*

1,1)2,1(

zD

QsBzp
zP





        (38) 

)(

)()1)(1(
),0(

*

1,2)2,2(

zD

QsBzpr
zP





       (39) 

  Using equations (37)-(39) in (33), we get 

)(

))](1)(()1()()()[1(
),0(

*

2,2

*

1,2

*

2,1

*

1,1

zD

QsrBrsBpsBspBzq
zV





   (40) 

  Integration of equations (26) and (27) by parts with respect to 𝑥 and then using equations (36)- 

(40), we get  

dxzxPzP ),()(
0

)1,1()1,1(




  

             
)(

)1)(( *

1,1

zD

QsBp 
          (41) 

dxzxPzP ),()(
0

)2,1()2,1(




  
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)1)()(( *

2,1

*

1,1

zD

QsBspB 
         (42) 

dxzxPzP ),()(
0

)1,2()1,2(




  

             
)(

)1)()(1( *

1,2

zD

QsBp 
         (43) 

dxzxPzP ),()(
0

)2,2()2,2(


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  
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QsBsBpr 
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



0

),()( dxzxVzV  

        
)(

))](1)(()1()()()[1)(( *

2,2

*

1,2

*

2,1

*

1,1

*

zD

QsrBrsBpsBspBsVq 
    (45) 

  The idle probability Q  is obtained using the equation (19) as 

1Q            (46) 

where 

).()]()()[1()]()([ 2,21,22,11,1 VqEBrEBEpBEBEp     

  The utilization factor 1)(   is the stability condition under which steady state solution exists. 

  Equations (41)-(45) together with equation (46) are respectively, the probability generating 

functions of the number of customers in the queue when the server is, serving phase 1 service, 

serving phase 2 service, serving type 2 service, serving an optional service and the sever is on 

vacation.        

  The probability generating function for the number of customers in the queue irrespective of server 

state is 


 


2

1

2

1

),( )()()(
i j

ji zVzPQzU  

         
)(

)1)(1(

zD

z 
                       (47) 

5. The Performance Measures 

         Using straightforward calculations the following performance measures have been obtained: 

(i) The mean number of customers in the queue is  

)(lim
1

zU
dz

d
L

z
q


 where )(zU is given in equation (47). 

)1(
))((

)()1()(
lim

2

'

1








 


 zD

zDzzD
L

z
q         (48) 

  Since this limit gives 
0

0
 form, so applying L’Hospitals rule twice, we get 

2'

''

))1((2

)1(

D

QD
Lq




 

)1(2

1

2








C
Lq            (49) 

where )([))]()()(1())()(()[(2)( 2

1,12,21,22,11,1

2

1 BEpBrEBEpBEBEpVqEVqEC   

     
)]()(2)()()[1()]()(2)( 2,21,2

2

2,2

2

1,22,11,1

2

2,1 BEBrEBrEBEpBEBEBE   

(ii) The mean waiting time in the queue is 



q

q

L
W   

where qL  is given in (49). 

(iii) The variance of the number of customers in the queue is 
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  Now equation (48) differentiating with respect to ,z  we get  
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  Since this limit gives 
0
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 form, so applying L’Hospitals rule three times, we get 
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    Using equations (49) and (51) in (50), we get       
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(iv) The variance of the waiting time in the queue is 
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where 
qLV  is given in (52). 

6. Some Particular Models 

 In this section, two particular models are derived by taking known distributions to service 

times and vacation time. The service rates are 1,1  for phase 1 service, 2,1  for phase 2 service, 1,2  

for type 2 service, 2,2  for an optional service and the vacation rate is .  

Model 1:  In this model the service times and the vacation time distribution are negative 

exponential. 
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7.  The Numerical Study  

     In this section, some numerical results have been calculated. The service rates, the 

probability are fixed as 𝜇1,1 = 2, 𝜇1,2 = 5, 𝜇2,1 = 6, 𝜇2,2 = 3, 𝑞 = 0.6, 𝑟 = 0.7, 𝑝 = 0.4 and  𝑘 = 7. 

The arrival rate (𝜆) and the vacation rate (𝜃) has been varied from 0.1 to 1.0 and 3.2 (0.2) 4.0. The 

system performance measures the mean number of customers in the queue (𝐿𝑞),  the mean waiting 

time in the queue  𝑊𝑞 ,  the variance of the number of customers in the queue (𝑉𝐿𝑞
) and the 

variance of the waiting time in the queue (𝑉𝑊𝑞
)  have been calculated and are presented in figures 

and tables.   

 
From the figures 1 and 2, it is clear that the mean number of customers in the queue for 

both models are increasing functions of arrival rate.  The waiting time also increases for increasing 
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Figure 1: Arrival rate versus mean number of customers 

in the queue for model 1
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values of arrival rate. In table 1 and 2, the variance of  number of  customers in the queue and the 

variance of waiting time in the have been presented. The variances increases for increasing values of 

arrival rate. 
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Figure 2: Arrival rate versus mean number of customers in 
the queue for model 2
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Figure 3: Arrival rate versus mean waiting time in the 

queue  for model 1
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Table 1: The variance of number of customers in the queue for model 1 

 
𝜆 

𝜇1,1 = 7, 𝜇1,2 = 5, 𝜇2,1 = 6, 𝜇2,2 = 3, 𝑞 = 0.6, 

𝑘 = 7, 𝑟 = 0.2, 𝑝 = 0.4 
𝜃 = 3.2 𝜃 = 3.4 𝜃 = 3.6 𝜃 = 3.8 𝜃 = 4.0 

0.1 0.0048 0.0046 0.0045 0.0043 0.0042 

0.2 0.0228 0.0219 0.0212 0.0206 0.0201 

0.3 0.0617 0.0593 0.0572 0.0554 0.0539 

0.4 0.1336 0.1279 0.1230 0.1189 0.1153 

0.5 0.2575 0.2454 0.2353 0.2266 0.2191 

0.6 0.4659 0.4417 0.4214 0.4043 0.3896 

0.7 0.8162 0.7686 0.7291 0.6960 0.6677 

0.8 1.4186 1.3240 1.2465 1.1820 1.1275 

0.9 2.5046 2.3086 2.1507 2.0210 1.9129 

1.0 4.6268 4.1862 3.8397 3.5611 3.3329 

Table 2: The variance of number of customers in the queue for model 2 

 
𝜆 

𝜇1,1 = 7, 𝜇1,2 = 5, 𝜇2,1 = 6, 𝜇2,2 = 3, 𝑞 = 0.6, 𝑟 = 0.2, 𝑝 = 0.4 

𝜃 = 3.2 𝜃 = 3.4 𝜃 = 3.6 𝜃 = 3.8 𝜃 = 4.0 

0.1 0.0034 0.0033 0.0032 0.0031 0.0030 

0.2 0.0158 0.0152 0.0147 0.0142 0.0139 

0.3 0.0414 0.0398 0.0384 0.0371 0.0361 

0.4 0.0872 0.0835 0.0803 0.0775 0.0751 

0.5 0.1640 0.1563 0.1497 0.1441 0.1392 

0.6 0.2901 0.2749 0.2622 0.2513 0.2419 

0.7 0.4978 0.4687 0.4444 0.4237 0.4061 

0.8 0.8490 0.7924 0.7455 0.7063 0.6729 

0.9 1.4738 1.3583 1.2646 1.1872 1.1223 

1.0 2.6813 2.4257 2.2235 2.0600 1.9255 

Table 3: The variance of the waiting time in the queue for model 1 

 
𝜆 

𝜇1,1 = 7, 𝜇1,2 = 5, 𝜇2,1 = 6, 𝜇2,2 = 3, 𝑞 = 0.6, 

𝑘 = 7, 𝑟 = 0.2, 𝑝 = 0.4 
𝜃 = 3.2 𝜃 = 3.4 𝜃 = 3.6 𝜃 = 3.8 𝜃 = 4.0 

0.1 0.4752 0.4592 0.4454 0.4336 0.4232 

0.2 0.5689 0.5481 0.5305 0.5152 0.5019 

0.3 0.6858 0.6587 0.6357 0.6160 0.5989 

0.4 0.8349 0.7991 0.7688 0.7429 0.7205 

0.5 1.0302 0.9817 0.9410 0.9063 0.8765 

0.6 1.2942 1.2269 1.1706 1.1230 1.0822 

0.7 1.6658 1.5685 1.4880 1.4203 1.3627 

0.8 2.2166 2.0688 1.9476 1.8468 1.7618 

0.9 3.0921 2.8501 2.6551 2.4951 2.3616 

1.0 4.6268 4.1862 3.8397 3.5611 3.3329 

Table 4: The variance of the waiting time in the queue for model 2 

 
𝜆 

𝜇1,1 = 7, 𝜇1,2 = 5, 𝜇2,1 = 6, 𝜇2,2 = 3, 𝑞 = 0.6, 𝑟 = 0.2, 𝑝 = 0.4 

𝜃 = 3.2 𝜃 = 3.4 𝜃 = 3.6 𝜃 = 3.8 𝜃 = 4.0 
0.1 0.3405 0.3287 0.3186 0.3097 0.3019 

0.2 0.3939 0.3794 0.3668 0.3559 0.3463 

0.3 0.4605 0.4422 0.4264 0.4128 0.4008 

0.4 0.5453 0.5218 0.5017 0.4843 0.4691 

0.5 0.6561 0.6252 0.5989 0.5763 0.5567 

0.6 0.8057 0.7637 0.7283 0.6980 0.6719 

0.7 1.0158 0.9565 0.9068 0.8648 0.8287 

0.8 1.3266 1.2381 1.1649 1.1036 1.0514 

0.9 1.8194 1.6770 1.5613 1.4657 1.3856 

1.0 2.6813 2.4257 2.2235 2.0600 1.9255 
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