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ABSTRACT 

The aim of this paper is to prove some common fixed point theorem in metric 

spaces by removing the assumption of continuity, relaxing the condition of 

compatibility of type (B) to weak compatibility and replacing the 

completeness of the space with a set of alternative conditions. 
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1.  INTRODUCTION 

In 1976, Jungck [3] proved a common fixed point theorem for commuting maps, generalizing 

the Banach’s fixed point theorem.  Sessa [11] defined a generalization of commutativity, which is 

called  weak commutativity. Further Jungck [4] introduced more generalized commutativity so called 

compatibility , which is more general than that of weak commutativity. The concept has been used 

by several authors to prove common fixed point theorems and in the study of periodic points (see 

e.g. [4],[5],[7],[9],[10]) 

Jungck, Murthy and Cho [6] defined compatible mappings of type (A) and pointed out  that 

under some conditions these two concept are equivalent, and proved common fixed point 

theorems. Pathak and Khan [8] defined compatible mappings of type (B) as a generalization of 

compatible mappings of type (A). The same authors remarked that under some conditions, 

compatible mappings, compatible mappings of type (A) and compatible mappings of type (B) are 

equivalent. They derived  relations between these mappings and proved a fixed point theorem of 

Gregus type for compatible mappings of type (B) in Banach spaces. 
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In 1998, Jungck and Rhoades [2] introduced the notion of weakly compatible maps and showed that 

compatible maps are weakly compatible but converse need not be true . 

The aim of this paper is to prove some common fixed point theorems in metric spaces by 

removing the assumption of continuity, replacing the  condition of compatibility of type (B) by weak 

compatibility and replacing the completeness of the space with a set of alternative conditions. We 

improve results of Djoudi [1]. 

2. PRELIMINARIES 

Throughout this paper , X denotes a metric space (X,d) with the metric d. 

Definition 2.1. A sequence {xn} in a metric space (X,d) is said to be convergent to a point x in X if 

limn d(xn ,x)  =  0. 

Definition 2.2. A sequence {xn} in a metric space (X,d) is said to be Cauchy sequence if 

limm,n d(xm ,xn)  =  0. 

Definition 2.3. A metric space (X,d) is said to be complete if every Cauchy sequence in X is 

convergent. 

Definition 2.4. [4]  Let S and T be mappings from a metric space (X,d) into itself. Then S and T are 

said to be compatible, if 

limn  d(STxn ,TSxn)  =  0 

where {xn } is a sequence  in X such that 

lim n  Sxn  = lim n Txn  = z  for some  z X. 

Definition  2.5. [2]  Two mappings S and T  are said to be weakly compatible if they commute at their 

coincidence points. 

Example 2.1 : Define  S,T : [0,3]    [0,3] by 

x, x [0,1) 3 x, x [0,1)
S(x)     and   T(x)=  

3, x [1,3] 3, x [1,3]

   
  

  
 

Then for any x [1,3], STx = TSx and hence  S,T  are weakly compatible maps on [0,3].  

Example 2.2.  Let X = R  and  define S,T: R  R  by  Sx = x/3, xR and Tx = x2, xR. Hence  0 and  1/3  

are two coincidence points for the maps S and T. Note that S and T commute at 0, i.e. ST(0) =  TS(0) = 

0, but ST(1/3) = S(1/9) = 1/27 and TS(1/3) = T(1/9) = 1/81  and so S and T are not weakly compatible 

maps on R. 

Remark 2.1. Weakly compatible maps need not be compatible . Let  X = [2,20] and d be the usual 

metric on X. Define mappings  S,T : X  X by Sx = x  if  x = 2  or  x >  5,  Sx = 6  if  2 < x  5,  Tx = x  if   x 

= 2,  Tx = 12  if  2 < x  5, Tx = x – 3 if  x > 5. The mappings S and T are non-compatible since sequence 

{xn} defined by  xn  = 5 + (1/n), n  1. Then Txn  = 2, Sxn  = 2, TSxn  = 2 and STxn  = 6, as n  . But they 

are weakly cmpatible  since they commute at coincidence point at x = 2 

Example 2.3.  Let X = [0, 2] with the metric d, defined by d(x, y) = |x – y| for all x,y  X. Clearly (X,d) is 

a  metric space . Define S, T : X  X by Sx = x if x  [0, 1
3 ) , S(x) = 1

3  if x  1
3  and Tx = x/(x+1) for all x 

 [0, 2]. Consider the sequence {xn = (½) + (1
n) : n  1} in X. Then  limn    Sxn = 1

3  ,  limn    Txn = 1
3. 

But  limn   d(STxn, TSxn ) = 1/3 – 1/4  0. Thus S and T are non compatible. But S and T are 

commuting at their coincidence point x = 0, that is, weakly compatible at x = 0. limn  d(STxn, TTxn ) 

=  1/3 – 1/4    0 and limn   d(TSxn, SSxn ) = 1/4 – 1/3  0. Thus A and B are not compatible of 

type (A). Further, limn   d(SSxn, TTxn ) = 1/3 – 1/4  0. Thus A and B are not compatible of type 

(B). 

In view of the above examples, we observe that 

(i) weakly compatible maps need not be compatible, 

(ii) weakly compatible maps need not be compatible of type (A), 
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(iii) weakly compatible maps need not be compatible of type (B). 

3.  MAIN RESULTS 

Let  R+   be the set of non-negative real numbers and let  : (R+ )
5  
  R+  be a function 

satisfying the following conditions: for any  t > 0,   is upper semi continuous in each coordinate 

variable and non-decreasing, and (t) = max{ (0,t,0,0,t), (t,0,0,t,t), (t,t,t,2t,0), (0,0,t,t,0) } 

For our main result we need the following  lemmas ; 

Lemma 3.1. [12]  For any  t > 0 , (t) < t if and only if limn   
n(t) = 0  where  n  denotes the n-times 

repeated composition of    with itself. 

Lemma 3.2. [1]  Let  I, J, S and T be mappings from a metric space (X,d) into itself satisfying (1) and 

(2). Then  limn    d(yn ,yn+1 )  =   0,  where  {yn } is the sequence constructed in X and described by (7). 

Lemma 3.3. [1]  Let  I, J, S and T be mappings from a metric space (X,d) into itself satisfying the 

conditions (1) and (2). Then the sequence  {yn } defined by (7) is a Cauchy sequence in X. 

Djoudi [1] proved the following 

Theorem A. Let I,J,S and T be mappings from a complete metric space (X,d) into itself satisfying 

(1)   S(X)    J(X)    and   T(X)      I(X), 

(2)   d(Sx,Ty)         (d(Ix,Jy), d(Ix,Sx), d(Jy,Ty), d(Ix,Ty), d(Jy,Sx)) for all  x,y    X, 

(3)   one of  I,J,S or T is continuous, 

(4)   the pairs {S,I} and {J,T} are compatible of type (B). 

Then I,J,S and T have a unique common fixed point  z. 

Now, we prove the following 

Theorem 3.1. Let I, J, S and T be mappings  from a metric space (X,d) into itself satisfying the 

conditions (1) and (2) and 

(5)  one of  I(X), J(X), S(X) or T(X) is a complete subspace of X, then 

(i)   S and I have a coincidence point, 

(ii)  J and T have a coincidence point. 

Further if  

(6)   The pairs {S,I} and {J,T} are weakly compatible, 

(iii)   I, J, S and T have a unique common fixed point in X. 

Proof:  By assumption (1), since  S(X)  J(X), for an arbitrary  x0   X there exists a point x1  X such 

that Sx0  = Jx1 . Since  T(X)  I(X), for this point x1  we can choose a point  x2  X such that  Tx1  = Ix2. 

Continuing this way, we can construct a sequence  {yn } in X such that 

(7)    y2n    =   Jx2n+1     =    Sx2n   and    y2n +1   =   Ix2n+2     =    Tx2n+1 , 

for every   n  =  0,1,2,… 

Thus in the view of Theorem 2 in [1], {yn } is a Cauchy sequence in X. Now suppose that  I(X) is 

complete. Note that the subsequence  {y2n+1 }  is contained in I(X) and has a limit in I(X). Call it z. Let u 

= I-1z. Then  Iu = z. We shall use the fact that the subsequence  {y2n} also converges to z. By (2), we 

have 

d(Su, y2n+1) = d(Su, Tx2n+1 ) 

   (d(Iu, Jx2n+1 ), d(Iu,Su), d(Jx2n+1 ,Tx2n+1 ), d(Iu, Tx2n+1 ), d(Jx2n+1 ,Su)) 

=    (d(z, y2n ), d(z,Su), d(y2n ,y2n+1 ), d(z, y2n+1 ), d(y2n ,Su)) 

which implies that as n  , 

d(Su,z)    (0,d(z,Su),0,0,d(z,Su)) < d(Su,z), 

which is a contradiction . Thus we have  Su  =  z. Since  Iu  =  z thus  Su  =  z  =  Iu, i.e.  u is a 

coincidence point of  S and I. This proves (i), since  S(X)    J(X), 
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Su = z  implies that  z  J(X) . Let  v   J-1z.  Then Jv = z.  It can be  easily verified by using similar 

arguments of the previous part of the proof that  Tv = z. 

If we assume  J(X) is complete, then argument analogous to the previous completeness argument 

establishes  (i) and (ii). The remaining two cases pertain essentially to the previous cases. Indeed, if 

T(X) is complete, then by (1),  z  T(X)  I(X). 

Similarly if  S(X) is complete, then  z  S(X)  J(X). Thus  (i) and (ii) are completely established.  

Since the pair  {S,I} is weakly compatible therefore S and I commute at their coincidence point  i.e. 

SIu   =  ISu  or  Sz = Iz.  Similarly  JTv = TJv  or  Tz = Jz. Now we prove that  Sz = z. 

By (2), we have 

d(Sz, y2n+1)   =   d(Sz, Tx2n+1 ) 

   (d(Iz, Jx2n+1 ), d(Iz,Sz), d(Jx2n+1 ,Tx2n+1 ), d(Iz, Tx2n+1 ), d(Jx2n+1 ,Sz)) 

=        (d(Sz, y2n ), d(Sz,Sz), d(y2n ,y2n+1 ), d(Sz, y2n+1 ), d(y2n ,Sz)) 

Proceeding limit as n  , we  have 

d(Sz,z)      (d(Sz,z),0,0,d(Sz,z),d(z,Sz)) <   d(Sz,z), 

which is a contradiction. Thus we have  Sz = z and therefore  Sz = z = Iz. 

Similarly , we have  Tz = z = Jz. This means that z is a common fixed point of I, J, S and T. 

For uniqueness of common fixed point let  w  (w    z) be another common fixed point of I, J, S and T. 

Then by (2), we have 

d(w,z )   =   d(Sw, Tz ) 

   (d(Iw, Jz ), d(Iw,Sw), d(Jz ,Tz ), d(Iw, Tz ), d(Jz ,Sw)) 

        (d(w, z ),0,0, d(w, z ), d(z ,w)) 

<    d(w, z ), 

hence  w  =  z. This completes the proof of the theorem. 
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