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oot ABSTRACT

ISSN:2348-0580 X X X . X
: The non-homogeneous sextic equation with five unknowns given by
AN

b = (X + y)(x3 - y3): 26(22 —WZ)T4 is considered and analysed for its non-zero
distinct integer solutions. Employin the linear transformation
: BOMSR : & PoYIng .

X=U+V,y=u—-Vv,z=2u+V,Ww=2u—-V,(U=Vv=0)and applying the

e omsr<om method of factorization, three different patterns of non-zero distinct integer

Smvginainis gplutions are obtained. A few interesting relations between the solutions and
special numbers namely Four dimensional numbers, Polygonal numbers,
Octahedral numbers, Pyramidal numbers, Centered Pyramidal numbers,
Jacobsthal numbers, Jacobsthal-Lucas numbers, Kynea numbers and Star
numbers are presented.
Keywords: Non-homogeneous sextic equation, sextic equation with five
unknowns, Integer solutions.
2010 Mathematics Subject Classification: 11D241

1. INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems [1-4]
particularly, in [5, 6] Sextic equations with three unknowns are studied for their integral solutions.
[7-12] analyze Sextic equations with four unknowns for their non-zero integer solutions. [13, 14]
analyze Sextic equations with five unknowns for their non-zero integer solutions. This
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communication analyzes a  Sextic equation with five unknowns given

(x + y)(x3 - y3): 26(22 —WZ)T4 .

by

Infinitely many Quintuples (x, y, z, w, T) satisfying the above equation are obtained. Various

interesting properties among the values of x, y, z, w and T are presented.
Notations:
e Polygonal number of rank n with size m
n-1m-2
1 ol 00002

e Pyramidal number of rank n with size m

o7 =L +1](m 2+ 5-m)]

n

e Star number of rank n

S, =6n(n—1)+1
e QOctahedral number of rank n

1

OH, = g(n(an +1))

e Centered Pyramidal number of rank n with size m
~m(n-n(n+1)+6n

m,n 6

e Four dimensional Figurate number of rank n whose generating polygon is a square

CP

n* +5n°+8n®+4n
12
e Four dimensional Figurate number of rank n whose generating polygon is a pentagon
3n* +10n° +9n® + 2n
4

e Jacobsthal number of rank n
1
3, ==(2" - (1))
=11

e Jacobsthal-Lucas number of rank n

jn =2" +(_1)”
Kynea number of rank n

Ky, = (2" +1f -2
2. METHOD OF ANALYSIS
The non-homogeneous sextic equation with five unknowns to be solved is given by

(x+ y)(x3 —y3): 26(22 —WZ)T4
The substitution of the linear transformations
X=U+V,y=U—-V,Z=2u+V,W=2U—-V,Uu=V=0
in (1) leads to
3u®+v? =521
Assume T =T(a, b)z a’+3b% ab>0

I:4,n,4 =

F4,n,5 =
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(3) is solved through different approaches and different patterns of solutions thus obtained for (1)
are illustrated below:

2.1 Pattern: 1

Write 52 as

52=(7+iv3)(7-iv3) (5)

Using (4) and (5) in (3) and employing the method of factorization and equating positive factors we
get

(v + i\/§u): (7 + i\/§)(a + i\/§b)4
Equating real and imaginary parts,
u=u(a,b)=a*+28a’h —18a°h” —84ab® + 9b*
v =V(a,b)=7a* —12a’h —126a%0” + 36ab°* + 63b*
Employing (2), the values of x, y, z, w and T are given by
x =x(a,b)=u+v=8a" +16a% —144a’b’ — 48ab’ + 72b*
y=y(a,b)=u—v=—-6a*+40a’h +108a’b’ —120ab’ — 54b*
z=12(a,b)=2u+v=09"*+44a’b —162a’h* —132ab’ + 81b*
w =w(a,b)=2u-v=-5a* +68a°h +90a’h® — 204ab°® — 45b*
T=T(a,b)=a%+3b’
which represent non-zero distinct integer solutions of (1) in two parameters.
Properties:
e 10450, —3x(a,l) —4y(a,l) = 0(mod5)
e T(1,2")+9J, +3j, —4=3Ky,
. 72T,,f —x(Lb)-48CP,, —24S, =0(mod2)
e wi(a,a)-y(aa)-z(a,a)is a nasty number
o 2{T(1,b)—1} is a nasty number
2.2 Pattern: 2
One may write (3) as

v2 +3u? =52T"*1 (6)
Also, write 1 as
+iav3)0-i4v3)

49
Substituting (4), (5) and (7) in (6) and employing the method of factorization and equating positive

1= (7)

factors we get

(v+ i\/§u): (7 i i\/§)7(1+ i4\/§) (a + i\/§b)4

Equating real and imaginary parts, we have

u=u(ab)=2(29a* — 20a%h —522a%? + 60ab* + 261b*
7 (8)

v=v(a,b)= %(— 5a* —348a°h + 90a%h? +1044ab® — 45b* ) o)
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The choices a=7A and b=7B in (8), (9) lead to
u=Uu(A,B)=9947A" —6860A°B—179046A°B’ + 20580AB° +89523B*
v=V(A,B)=-1715A" ~119364A°B + 30870A°B’ + 358092AB° —154358*

In view of (2), the integer values of x, y, z, w and T are given by
X= X(A.B) =8232A" —12622A°B-148176A’B’ +378672AB° + 74088B"
y = y(A, B)=11662A" +112504A°B - 209916A°B* —337512AB° +1049588"
Z= Z(A, B) =18179A" —133084A°B —327222A°B” +399252AB° +163611B*
w = Ww(A, B)= 21609A* +105644A°B —388962A°B? —316932AB° +194481B*
T=T(A,B)=49A? +147B°

which represent non-zero distinct integer solutions of (1) in two parameters.

Properties:

> 24F,,,+76829T,, ) —x(A~A)-3y(A,~A)-15(0OH, )-3T, , = 0(mod3)
> 218148, , ,-2z(A1)-223979CP, , —135044T, , =0(mod7)

> w(L,B)-194481T, , +633864P5 +120055, =0(mod2)

> T(L2")+147(3), + j,)-196=147Ky,

> Z{T(l, B)— 49} is a nasty number

Remark:
It is worth to note that 52 in (5) and 1in (7) are also represented in the following ways

52 = (5+i33)(5-i3V3) 1= (1”\/521(1_“@)
= (2+i4V3)(2-i4V3) (1+i15\/§6)7(é— i15/3)

By introducing the above representations in (5) and (7), one may obtain different patterns of

solutions to (1).
2.3 Pattern: 3

Write (3) as

uz —T*)=49T* -2 (10)
Factorizing (10) we have

u+T?)u-T?)=(7T2 +v)(7T% V) (11)

This equation is written in the form of ratio as

u-T12) (7T
7(iz—v):(u+;\/):%’ b0 (12)

which is equivalent to the system of double equations

3bu+av—(30+7a)T> =0 (13)

—au+bv+(7h—ajT? =0 (14)
Applying the method of cross multiplication, we get

u=-a*+3b” +14ab (15)

v =7a?-21b® +6ab (16)
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T2 = a2 + 3b2 (17)

Here T%(a,b) is of the form z° = Dx* + y* (D>0 and square free). Then the solution for (17) is

a=3p°—q°, b=2pq, T=3p’+q’ (18)

Using (18) in (15) and (16), we get

u=u(p,q)=-9p* +84p°q+18p°g” — 28pq° —q*
v=V(p,q)=63p* +36p°q —126p°q* —12pq° + 7q°*

In view of (2), the integer values of x, y, z, w, T are given by

x =X(p,q)=u+v=54p* +120p°q —108p°q* — 40pq° + 69"
y=y(p,q)=u—v=-72p" +48p°q +144p°q*> —16pq° - 8q"

z =2(p,q)=2u + v = 45p* + 204p°q — 90p°q” — 68pq’ + 50"

w =w(p,q)=2u—Vv=-81p* +132p%) +162p’¢” — 44pq° —9q°*
T=T(p.q)=3p" +¢

which represent non-zero distinct integer solutions of (1) in two parameters.

Properties:

3.

w(L,q)-y(Lq)+(T,, F +28(CP, . )-3S, =0(mod2)

-2, ifnisodd
T(2"1)-3 6j, =13,
( ) Ko +6J; {10, if nisewven
y(p)+72(T, , } —72CP, , — 48T, , =0(mod2)

2{T(p,1)—1}is a nasty number

CONCLUSION
First of all, it is worth to mention here that in (2), the values of z and w may also be represented by
z=2uwv+1lw=2uv-1and Z=Uv+2,W=UV—_2and thus will obtain other choices of solutions

to (1). In conclusion, one may consider other forms of Sextic equation with five unknowns and

search for their integer solutions.
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