ON NON-HOMOGENEOUS SEXTIC EQUATION WITH FIVE UNKNOWNS

\[(x + y)(x^3 - y^3) = 26(z^2 - w^2)\Gamma^4\]

K.MEENA\(^1\), S.VIDHYALAKSHMI\(^2\), S. AARTHY THANGAM\(^3*\)

\(^1\)Former VC, Bharathidasan University, Trichy-620 024, Tamil Nadu, India.
email: drkmeena@gmail.com

\(^2\)Professor, Department of Mathematics, Shrimati Indira Gandhi College,Trichy, Tamil Nadu, India.
email: vidhyasigc@gmail.com

\(^3\)*Assistant Professor, Department of Mathematics, Chidambaram Pillai College for Women, Mannachanallur, Tamil Nadu, India. email: aarthythangam@gmail.com

ABSTRACT

The non-homogeneous sextic equation with five unknowns given by
\[(x + y)(x^3 - y^3) = 26(z^2 - w^2)\Gamma^4\] is considered and analysed for its non-zero distinct integer solutions. Employing the linear transformation
x = u + v, y = u - v, z = 2u + v, w = 2u - v, (u \neq v \neq 0) and applying the method of factorization, three different patterns of non-zero distinct integer solutions are obtained. A few interesting relations between the solutions and special numbers namely Four dimensional numbers, Polygonal numbers, Octahedral numbers, Pyramidal numbers, Centered Pyramidal numbers, Jacobsthal numbers, Jacobsthal-Lucas numbers, Kynea numbers and Star numbers are presented.

Keywords: Non-homogeneous sextic equation, sextic equation with five unknowns, Integer solutions.

2010 Mathematics Subject Classification: 11D241

1. INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems [1-4] particularly, in [5, 6] Sextic equations with three unknowns are studied for their integral solutions. [7-12] analyze Sextic equations with four unknowns for their non-zero integer solutions. [13, 14] analyze Sextic equations with five unknowns for their non-zero integer solutions. This
communication analyzes a Sextic equation with five unknowns given by
\[(x + y)(x^3 - y^3) = 26(z^2 - w^2)T^4.\]

Infinitely many Quintuples \((x, y, z, w, T)\) satisfying the above equation are obtained. Various interesting properties among the values of \(x, y, z, w\) and \(T\) are presented.

Notations:
- Polygonal number of rank \(n\) with size \(m\)
 \[T_{m,n} = n \left[1 + \frac{(n-1)(m-2)}{2}\right]\]
- Pyramidal number of rank \(n\) with size \(m\)
 \[P^m_n = \frac{1}{6} [n(n+1)][(m-2)n + (5-m)]\]
- Star number of rank \(n\)
 \[S_n = 6n(n-1) + 1\]
- Octahedral number of rank \(n\)
 \[OH_n = \frac{1}{3} (n(2n^2 + 1))\]
- Centered Pyramidal number of rank \(n\) with size \(m\)
 \[CP_{m,n} = \frac{m(n-1)n(n+1)+6n}{6}\]
- Four dimensional Figurate number of rank \(n\) whose generating polygon is a square
 \[F_{4,n,4} = \frac{n^4 + 5n^3 + 8n^2 + 4n}{12}\]
- Four dimensional Figurate number of rank \(n\) whose generating polygon is a pentagon
 \[F_{4,n,5} = \frac{3n^4 + 10n^3 + 9n^2 + 2n}{4!}\]
- Jacobsthal number of rank \(n\)
 \[J_n = \frac{1}{3} \left(2^n - (-1)^n\right)\]
- Jacobsthal-Lucas number of rank \(n\)
 \[j_n = 2^n + (-1)^n\]
- Kynea number of rank \(n\)
 \[Ky_n = \left(2^n + 1\right)^2 - 2\]

2. **METHOD OF ANALYSIS**

The non-homogeneous sextic equation with five unknowns to be solved is given by
\[(x + y)(x^3 - y^3) = 26(z^2 - w^2)T^4.\]
(1)

The substitution of the linear transformations
\[x = u + v, \ y = u - v, \ z = 2u + v, \ w = 2u - v, \ u \neq v \neq 0\]
in (1) leads to
\[3u^2 + v^2 = 52T^4\]
(3)
Assume \(T = T(a, b) = a^2 + 3b^2; \ a, b > 0\)
(3) is solved through different approaches and different patterns of solutions thus obtained for (1) are illustrated below:

2.1 Pattern: 1

Write 52 as

\[
52 = (7 + i\sqrt{3})(7 - i\sqrt{3})
\]

(5)

Using (4) and (5) in (3) and employing the method of factorization and equating positive factors we get

\[
(v + i\sqrt{3}u) = (7 + i\sqrt{3})(a + i\sqrt{3}b)
\]

Equating real and imaginary parts,

\[
u = u(a,b) = a^4 + 28a^3b - 18a^2b^2 - 84ab^3 + 9b^4
\]

\[
v = v(a,b) = 7a^4 - 12a^3b - 126a^2b^2 + 36ab^3 + 63b^4
\]

Employing (2), the values of x, y, z, w and T are given by

\[
x = x(a,b) = u + v = 8a^4 + 16a^3b - 144a^2b^2 - 48ab^3 + 72b^4
\]

\[
y = y(a,b) = u - v = -6a^4 + 40a^3b + 108a^2b^2 - 120ab^3 - 54b^4
\]

\[
z = z(a,b) = 2u + v = 9a^4 + 44a^3b - 162a^2b^2 - 132ab^3 + 8b^4
\]

\[
w = w(a,b) = 2u - v = -5a^4 + 68a^3b + 90a^2b^2 - 204ab^3 - 45b^4
\]

\[
T = T(a,b) = a^2 + 3b^2
\]

which represent non-zero distinct integer solutions of (1) in two parameters.

Properties:

- \(104SO_n - 3x(a,1) - 4y(a,1) \equiv 0 \pmod{5}\)
- \(T(1,2^n) + 9J_n + 3j_n - 4 = 3Ky_n\)
- \(72(T_{4,b})^2 - x(1,b) - 48CP_{6,b} - 24S_b \equiv 0 \pmod{2}\)
- \(w(a,a) - y(a,a) - z(a,a)\) is a nasty number
- \(2[T(1,b) - 1]\) is a nasty number

2.2 Pattern: 2

One may write (3) as

\[
v^2 + 3u^2 = 52T^4 \times 1
\]

(6)

Also, write 1 as

\[
1 = \frac{(1 + 4\sqrt{3}) (1 - 4\sqrt{3})}{49}
\]

(7)

Substituting (4), (5) and (7) in (6) and employing the method of factorization and equating positive factors we get

\[
(v + i\sqrt{3}u) = \frac{(7 + i\sqrt{3})(1 + 4\sqrt{3}) (a + i\sqrt{3}b)}{7}
\]

Equating real and imaginary parts, we have

\[
u = u(a,b) = \frac{1}{7} (29a^4 - 20a^3b - 522a^2b^2 + 60ab^3 + 26b^4)
\]

(8)

\[
v = v(a,b) = \frac{1}{7} (-5a^4 - 348a^3b + 90a^2b^2 + 1044ab^3 - 45b^4)
\]

(9)
The choices \(a=7A\) and \(b=7B\) in (8), (9) lead to

\[
\begin{align*}
 u &= u(A, B) = 9947A^4 - 6860A^3B - 179046A^2B^2 + 20580AB^3 + 89523B^4 \\
 v &= v(A, B) = -1715A^4 - 119364A^3B - 30870A^2B^2 + 358092AB^3 - 15435B^4
\end{align*}
\]

In view of (2), the integer values of \(x, y, z, w\) and \(T\) are given by

\[
\begin{align*}
 x &= x(A, B) = 8232A^4 - 12622A^3B - 148176A^2B^2 + 378672AB^3 + 74088B^4 \\
 y &= y(A, B) = 11662A^4 + 112504A^3B - 209916A^2B^2 - 337512AB^3 + 104958B^4 \\
 z &= z(A, B) = 18179A^4 - 133084A^3B - 327222A^2B^2 + 399252AB^3 + 16361B^4 \\
 w &= w(A, B) = 21609A^4 + 105644A^3B - 388962A^2B^2 - 316932AB^3 + 19448B^4 \\
 T &= T(A, B) = 49A^2 + 147B^2
\end{align*}
\]

which represent non-zero distinct integer solutions of (1) in two parameters.

Properties:

- \(24F_{4,4,5} + 76829(T_{4,4})^2 - x(A, -A) - 3y(A, -A) - 15(OH_A) - 3T_{8,A} \equiv 0 \pmod{3}\)
- \(218148F_{4,4,4} - z(A, 1) - 223979CP_{6,6} - 135044T_{9,6} \equiv 0 \pmod{7}\)
- \(w(1, B) - 19448 \Pi_{4,6} + 633864P_B^5 + 12005S_B \equiv 0 \pmod{2}\)
- \(T(1, 2^n) + 147(3J_n + j_n) - 196 = 147K_n\)
- \(2[T(1, B) - 49] \) is a nasty number

Remark:

It is worth to note that 52 in (5) and 1 in (7) are also represented in the following ways

\[
\begin{align*}
 52 &= (5 + i3\sqrt{3})(5 - i3\sqrt{3}) \\
 &= (2 + i4\sqrt{3})(2 - i4\sqrt{3}) \\
 &= \frac{1 + i\sqrt{3}}{4} \frac{1 - i\sqrt{3}}{} \\
 &= \frac{1 + i15\sqrt{3}}{676} \frac{1 - i15\sqrt{3}}{} \\
 1 &= \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}
\end{align*}
\]

By introducing the above representations in (5) and (7), one may obtain different patterns of solutions to (1).

2.3 Pattern: 3

Write (3) as

\[
3(u^2 - T^2) = 49T^4 - v^2
\]

Factorizing (10) we have

\[
3(u + T^2)(u - T^2) = (7T^2 + v)(7T^2 - v)
\]

This equation is written in the form of ratio as

\[
\frac{3(u - T^2)}{7T^2 - v} = \frac{7T^2 + v}{u + T^2} = \frac{a}{b}, \quad b \neq 0
\]

which is equivalent to the system of double equations

\[
\begin{align*}
 3bu + av - (3b + 7a)T^2 &= 0 \\
 - au + bv + (7b - a)T^2 &= 0
\end{align*}
\]

Applying the method of cross multiplication, we get

\[
\begin{align*}
 u &= -a^2 + 3b^2 + 14ab \\
 v &= 7a^2 - 2ab^2 + 6ab
\end{align*}
\]
Here $T^2(a,b)$ is of the form $z^2 = Dx^2 + y^2$ (D>0 and square free). Then the solution for (17) is

$$a = 3p^2 - q^2, \quad b = 2pq, \quad T = 3p^2 + q^2$$

Using (18) in (15) and (16), we get

$$u = u(p,q) = -9p^4 + 84p^3q + 18p^2q^2 - 28pq^3 - q^4$$
$$v = v(p,q) = 63p^4 + 36p^3q - 126p^2q^2 - 12pq^3 + 7q^4$$

In view of (2), the integer values of x, y, z, w, T are given by

$$x = x(p,q) = u + v = 54p^4 + 120p^3q - 108p^2q^2 - 40pq^3 + 6q^4$$
$$y = y(p,q) = u - v = -72p^4 + 48p^3q + 144p^2q^2 - 16pq^3 - 8q^4$$
$$z = z(p,q) = 2u + v = 45p^4 + 204p^3q - 90p^2q^2 - 68pq^3 + 5q^4$$
$$w = w(p,q) = 2u - v = -81p^4 + 132p^3q + 162p^2q^2 - 44pq^3 - 9q^4$$

$$T = T(p,q) = 3p^2 + q^2$$

which represent non-zero distinct integer solutions of (1) in two parameters.

Properties:

- $w(1,q) - y(1,q) + (T_{4,q})^2 + 28(CP_{6,q}) - 3S_q = 0 (mod 2)$
- $T(2^n,1) - 3ky_n + 6j_n = \begin{cases} -2, & \text{if } n \text{ is odd} \\ 10, & \text{if } n \text{ is even} \end{cases}$
- $y(p,1) + 72(T_{s,p})^2 - 72CP_{s,p} - 48T_{s,p} = 0 (mod 2)$
- $2[T(p,1) - 1]$ is a nasty number

3. CONCLUSION

First of all, it is worth to mention here that in (2), the values of z and w may also be represented by $z = 2uv + 1, w = 2uv - 1$ and $z = uv + 2, w = uv - 2$ and thus will obtain other choices of solutions to (1). In conclusion, one may consider other forms of Sextic equation with five unknowns and search for their integer solutions.

4. REFERENCES

[12] Gaussian Integer Solutions of Sextic Equations with four unknowns \(x^6 - y^6 = 4z(x^4 + y^4 + w^4) \), Archimedes, J.Math, 3(3), 263-266, (2013)
