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ABSTRACT 

The present study analyses the MHD convective flow and heat transfer over 

an exponentially stretching surface with combined effects of momentum as 

well as thermal slip.The boundary value problem consisting of nonlinear 

PDE’s are converted into nonlinear ODE’s using a suitable similarity 

transformation. This problem has  been solved, using RungeKutta fourth 

order method with shooting technique.The effects of various physical 

parameters, such as, Hartmann number Ha,  Thermal buoyancy parameter 

Gr,  Prandtl number Pr,Eckert number Ec, heat generation/absorption 

parameter  , momentum slip parameter A,  and thermal slip parameter, B 

on flow and heat transfer charecteristics., are computed and represented 

graphically. 

Key Words: Exponentially stretching surface;Hartmannnumber;Momentum 

and thermal slip;Runge-Kutta shooting method. 

 

1. INTRODUCTION 

 The problems of heat transfer in the boundary layers of a continuous stretching surface with 

a  prescribed temperature have attracted considerable attention during the last few decades due to 

their numerous applications in several industrial manufacturing processes. For example, such as the 

extrusion of plastic sheet, hot rolling wire drawing, glass-fibres and paper production, drawing of 

plastic films and the cooling of a metallic plate in the cooling bath, materials manufactured by 

extrusion process, the boundary layer along a liquid film in condensation process and the heat 

treated materials travelling between a feed roll and the wind-up roll on conveyor belt posesess the 

features of a moving continuous surface. Annealing and thinning of copper wires is another example 

in which the final product depends on the rate of heat transfer at the stretching continuous surface. 
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 The flow and heat transfer phenomena over stretching surface have promising applications 

in a number of technological processes including production of polymer films or thin sheets. The 

heat transfer rate in the boundary layer stretching sheets is important, because in the mentioned 

applications the quality of the final product depends on the heat transfer rate between the 

stretching surface and the fluid during the cooling or heating process. Therefore, the choice of 

suitable cooling/heating liquid is essential as it has a direct impact on the rate of heat transfer. All 

the known fluids gaseous or liquid possess the property of viscosity in varying degree. Fluids like 

water and gaseous (air) viscosity is very small (negligible) but fluid such as oil, glycerine, paints, 

molecule,  and printer ink posses large viscosity, there exists a difference in relative tangential 

velocity i.e. there is a slip at the boundary. On the other hand the existence of intermolecular 

attraction makes the fluid to adhere to a solid wall and this gives rise to the shearing stress. The no-

slip (without slip or absence of slip) boundary condition (the assumption that a liquid adheres to a 

solid boundary) is one of the central tenets of the Navier-Stokes [1] and Gadel-Hak [2] theory. 

However, there are situations wherein this condition does not hold. Partial velocity slip may occur on 

the stretching boundary when the fluid is particulate such as emulsions, suspensions, foams and 

polymer solutions. Navier [3] proposed a slip boundary condition wherein the slip depends linearly 

on the shear stress. However, experiments suggest that the slip velocity also depends on the normal 

stress. H. I. Anderson [4] considered the slip flow of a Newtonian viscous fluid past a linearly 

stretching sheet. T. Hayat, T. Javed, Z.Abbas [5] studied M.H.D steady flow of second grade fluid with 

transfer analysis. The flow in a porous space is due to a stretching sheet which also exhibits slip 

condition. Bikash Sahoo [6] studied the effect of partial slip on the steady flow and heat transfer of 

an incompressible, thermo-dynamically compatible third grade fluid past a stretching sheet.   

A number of models have been developed for describing the slip that occurs at solid 

boundaries. A brief description of these models can be found in the work of Rao and Rajagopal [7]. 

Elbashbeshy [8] has added a new dimension in his investigation by considering the flow and heat 

transfer of a Newtonian fluid over an exponentially    stretching continuous surface. He considered 

an exponential stretching velocity distribution on the coordinate considered in the direction of 

stretching. P.Donald Ariel [9] studied the steady, laminar, axisymmetric flow of an incompressible 

viscous Newtonian fluid past a stretching sheet when there is a partial slip at the boundary. 

BikashSahoo,Younghae [10], investigated the combined effects of the non-Newtonian flow 

parameters, magnetic field and the partial slip on the flow and heat transfer of an electrically 

conducting third grade fluid arising due to the linearly stretching sheet. BikashSahoo [11], 

investigated the combined effects of the non-Newtonian flow parameters, magnetic field and the 

partial slip on the flow and heat transfer of an electrically conducting third grade fluid arising due to 

the linearly stretching sheet in presence of heat source (sink). Partha et al. [12] obtained an 

similarity solution for mixed convection flow past an exponentially stretching surface by taking into 

account the influence of viscous dissipation on the convective transport. Al-odat et al. [13] explained 

the effect of magnetic field on thermal boundary layer on an exponentially stretching continuous 

surface with an exponential temperature distribution.  

 Recently, Anuar Ishak [14] studied the MHD boundary layer flow due to an exponentially 

stretching sheet with radiation effect. He solved it numerically by an implicit finite-difference 

method. V. Singh, Shweta Agarwal [15] explained the effects of heat transfer for two types of 

viscoelastic  fluid over and exponentially stretching sheet with thermal conductivity and radiation in 

porous medium. He solved it by well known fourth order Runge-Kutta method with shooting 

technique. Krishnendu Bhattacharyya [16] explained the effect of steady boundary layer flow and 

reactive mass transfer past an exponentially stretching surface in an exponentially moving free 
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stream. R.N.Jat and Gopi Chand [17] worked on MHD flow and heat transfer over an exponentially 

stretching sheet with viscous dissipation and radiation effects. BikashSahoo [18] explained the 

effects  of flow and heat transfer of third grade fluid past an exponentially stretching  sheet with 

partial slip boundary condition. Sohail Nadeem and Changhoon Lee [19] studied the boundary layer 

flow of nanofluid over an exponentially stretching surface. He solved it analytically by  HAM method. 

 

Thus motivated by the above mentioned investigations and applications, we investigated the 

unsteady flow of an electrically conducting fluid with magneto hydrodynamic mixed convection heat 

transfer on a vertical surface of variable temperature that is stretched exponentially with 

momentum and thermal slip. It is assumed that the impermeable surface is stretched with 

exponential velocity in quiescent fluid and the surface is maintained at a constant temperature. The 

system is controlled by a uniform transverse magnetic field, as well as by internal heat generation, 

viscous dissipation and the partial slip (slip) effects. The obtained results have promising applications 

in engineering. The current investigation is not only important because of its technological 

significance, but also in view of the interesting mathematical features presented by the equations 

governing the slip flow. The aim of the present paper is to extend the work of Dulal Pal [20] to slip 

aspects. 

2. MATHEMATICAL FORMULATION 

Consider a two-dimensional flow of an electrically conducting and incompressible viscous 

fluid an impermeable plane wall stretching with velocity wu (x)  and a given temperature 

distribution wT (x) .The x-axis is directed along the continuous stretching surface and points in the 

direction of motion. The y-axis is perpendicular to x-axis hence the continuous stretching plane 

surface issues from a slit (see Fig.1)  

 
                                                                     Fig. 1 

  A uniform magnetic field oB is assumed to be applied in the y-direction. It is assumed that the 

induced magnetic field of the flow is negligible in comparison with applied one which corresponds to 

a very small magnetic Reynolds number. Under boundary layer as well as with the Boussinesq 

approximation, the continuity, momentum and energy equations can be written as: 



Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

   54 

Vol.5.Issue.2.2017 (April-June) 

M. SUBHAS ABEL et al., 
 

22

0

2

2
2

2

p p

u v
0 (2 .1)

x y

u v u
u v g (T T ) u ( 2. 2)

x y y

T T T u Q
u v (T T ) ( 2. 3)

x y y c y c





 
 

 

   
      

   

     
      

      

 

The associated boundary conditions to the problem are 

 
Where u and v are the x and y component of the velocity field, of the steady plane boundary flow, 

respectively, denotes the kinematic viscosity and   is the thermal diffusivity of the ambient fluid. 

Both are assumed to be constant.  is the electrical conductivity and 
0B  is the magnetic field flux 

density. The fluid flow is independent of the temperature field, T
 is the temperature of the 

ambient fluid and Q is the internal heat generation/absorption coefficient. 

 The stretching velocity 
wu (x)  and the exponential temperature distribution 

wT (x)  are 

defined as  : 

Where 
0T  is reference temperature and a isparameter of temperature distribution on the stretching 

surface. 

Introducing the following non-dimensional parameters [1999, 2006] 

 

Where   is the stream function which is defined in the usual form as 

u and v (2.10)
y x

 
  
 

 The correct form of   is taken from [1999] where as [2006] has typographical error which 

leads to incorrect solution. Thus substituting (5.2.8) and (5.2.9) into Eq. (5.2.10).We obtain u and v as 

follows: 
x x

' 'L 2L
0

Re
u(x, y) U e f ( ), v(x, y) e [f ( ) f ( )] (2.11)

L 2


       ,                                            

Eqs. (5.2.1) to (5.2.5) is transformed into the ordinary differential equation with the aid of Eqns. 

(5.2.8) to (5.2.11).Thus the governing equations using the dimensionless functions  f ( )  and  ( )   

become 

x / L

w 0

x

2L
w 0
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T (x) T (T T ) e , ( 2. 7) 
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Where 
x

X
L

  and a prime denotes the derivative with respect to . 

The boundary conditions (2.4) and (2.5) reduce to                      
' '' 'f (0) 0, f (0) 1 Af (0), (0) 1 B (0), (2.14)        
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In the above system of local similarity equations, the effect of the magnetic field is included as a 

ratio of the Hartman number to the Reynolds number. 

 The important physical quantities of interest in this problem are local Skin friction coefficient

fC and the local Nusselt numb er
xNu are defined as: 
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Where wall shear stress
w , wall heat flux

wq  are given by: 
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Where
f x x xC , Nu (Nur), Sh (Shr), Re  are the skin friction, local Nusselt number, local Sherwood 

number and local Reynolds number respectively. 

By solving eqs. (2.16) using eqs.( 2. 8),( 2.9),( 2.11) and (2.18).We get 
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3. NUMERICAL SOLUTION 

The set of coupled non-linear differential equations (2.12)  and (2.13) subject to the 

boundary conditions (2.14) and (2.15) are integrated numerically using a very  efficient  method 

known as Runge-Kutta method with Shooting technique. The most important factor of this method is 
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to choose the appropriate finite values of  .In order to determine  
  for the boundary 

value problem started by Eqs. (2.12) and (2.13) we start with some initial guess value for some 

particular set of physical parameters to obtain 
''f (0)  and '(0) .The solution procedure is repeated 

with another large value of 
  until two successive values of  ' 'f (0)  and '(0)  differ only by the 

specified significant digit. The last value of 
  is finally chosen to be the most appropriate value of 

the limit  for that particular set of parameters. The last value of  may change for another 

set of physical parameters. Once the finite value of   is determined then the coupled boundary 

value problem given by Eqs.( 2.12)-( 2.15) are solved numerically using the method of superposition. 

 In this method the third-order non-linear Eq.(2.12) and second order Eq. (2.13)  have 

reduced to five simultaneously ordinary differential equations as follows :  

 
The boundary conditions now become

f = 0, f = 1+A S , f =  S f =  1+B S f = S at η=0 (3.21), 51 2 1 3 1, 4 2 2,

f = 0, f = 0 as η (3.22)
2 4

 

→∞

 

 Where  
1S  and  

2S  are determined such that it satisfied  2f( ∞)=0  and 
4f ( ) 0  .Thus , to 

solve this resultant system, we need five initial conditions, but we have only two initial conditions on  

f  and one  initial condition on  .The third  condition on f (i.e. ' 'f (0)  and the second condition on 

(i.e.  '(0) ) are not prescribed which are to be determined by shooting method by using the initial 

guess values 
1S  and 

2S  until the boundary conditions 
2f ( ) 0   and  

4f ( ) 0   are satisfied. In 

this way, we employ shooting technique with Runge-Kutta method to determine two more 

unknowns in order to convert the boundary value problem to initial value problem. Once all the five 

initial conditions are determined the resulting differential equations can then be easily integrated, 

without any iteration by initial value solver. For this purpose, the well known fourth-order Runge-

Kutta method has been used. In this manner any non-linear equation involved in boundary value 

problem can easily be solved by this technique. To study the behaviour of the velocity and 

temperature profiles, curves are drawn for various values of the parameters that describe the flow.  
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4. RESULTS AND DISCUSSION 

 Numerical calculations were performed for velocity, temperature distribution, skin-friction 

coefficient and the wall temperature gradient for various values of physical parameters such as 
2

Ha /Re , a, Ec , Pr ,Gr and X location as can be seen clearly from the governing Eqs.( 2.12) and 

(2.13).The Wall-temperature gradient '(0) values (for both with slip and without slip) computed by 

the present method for Gr=Ec= =Ha=X=0  are compared with that of Magyari and Keller [1999] in 

the absence  of magnetic field and Al-odat et al. [2006], in the absence of buoyancy effects and Dulal 

pal [2010] are shown in Table1.Therefore, we are confident that results obtained by us are very 

much accurate to analyze the flow problem.   

Table 1 

a Pr (1) Magyari& 

Keller [1999] 

A=B=0 

(2) AL-odat 

et al. [2006] 

 

A=B=0 

(3) Dulal 

   Pal [2010] 

A=B=0 

(4)(i) Present 

Method 

Without slip 

A=B=0 

4(ii) 

 Present 

Method 

 With slip  
A=B=0.1 

  '(0)  
'(0)  

'(0)  
'(0)  

'(0)  

-1.5 0.5 0.20405 0.19191 0.20405 0.192611 0.182097 

 1 0.37741 0.36152 0.37741 0.376878 0.368736 

 3 0.92386 0.90309 0.92386 0.923837 0.955936 

 5 1.35324 1.34143 1.35324 1.353219 1.465334 

 8 1.88850 1.82858 1.88849 1.888460 2.170729 

 10 2.20000 2.13693 2.20003 2.199974 2.633748 

       

-0.5 0.5 -0.17582 -0.18187 -0.17582 -0.181936 -0.170205 

 1 -0.29988 -0.32697 -0.29988 -0.300036 -0.275656 

 3 -0.63411 -0.67215 -0.63411 -0.634105 -0.565047 

 5 -0.87043 -0.84156 -0.87043 -0.870426 -0.759634 

 8 -1.15042 -1.08391 -1.15032 -1.150320 -0.979965 

 10 -1.30861 -1.25074 -1.30861 -1.308617 -1.099983 

       

0.0 0.5 -0.33049 -0.31006 -0.33049 -0.334807 -0.307616 

 1 -0.54964 -0.53104 -0.54964 -0.549735 -0.493640 

 3 -1.12219 -1.08522 -1.12209 -1.122082 -0.958212 

 5 -1.52124 -1.47558 -1.52124 -1.511331 -1.256255 

 8 -1.99185 -1.92633 -1.99184 -1.991836 -1.583351 

 10 -2.25743 -2.18847 -2.25742 -2.240004 -1.757370 

       

1.0 0.5 -0.59434 -0.91903 -0.59434 -0.596798 -0.534174 

 1 -0.95478 -0.57771 -0.95478 -0.954813 -0.827207 

 3 -1.86908 -1.81039 -1.86907 -1.869061 -1.500402 

 5 -2.50014 -2.28864 -2.50013 -2.500126 -1.910219 

 8 -3.24213 -3.00587 -3.24212 -3.242109 -2.344234 
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Table 1 shows the values of Wall-temperature gradient '(0)  for different values of Pr and a .It is 

observed from the table that for  a=-0.5,0,1,3 , the values of '(0)  are  negative which shows that 

heat is transferred from the stretched surface to the ambient fluid and the reverse effect occurred 

for '(0)  when a= -1.5 for different  values of Pr. The case of no heat transfer between the 

stretched surface and the ambient fluid corresponds to '(0) 0   .The value of Eckert number Ec is 

chosen to be positive for all the predicted results shown graphically. Positive value of Ec means that 

the reference temperatures 
0T   must be greater than the free stream temperature T

 i.e. 

0(T T ) 0  .Which indicates that heat is transferred from the wall to the fluid. Further, it is 

observed that the above effects are true in case of with slip and without slip boundary conditions 

related to present method in our problem.  
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 Fig 2. has been plotted to depict the variation of wall temperature gradient  ' 0  vs.  Pr for 

different values of a = -1.5,-0.5, 0.0, 1.0, 3.0. Analysis of graph shows that as the values of a and Pr 

increases, the wall temperature gradient  ' 0   decreases. This is true in case of both with and 

without slip cases. 

 

 10 -3.66038 -3.18620 -3.66037 -3.660357 -2.568963 

       

3.0 0.5 -1.00841 -0.97665 -1.00841 -1.009505 -0.870509 

 1 -1.56029 -1.46569 -1.56030 -1.560296 -1.284371 

 3 -2.93854 -2.89007 -2.93854 -2.927806 -2.172415 

 5 -3.88656 -3.78072 -3.88656 -3.878062 -2.685087 

 8 -5.00047 -4.86245 -5.00046 -5.000449 -3.207785 

 10 -5.62820 -5.58576 -5.62820 -5.628163 -3.470708 
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Fig 3.Variation of velocity profiles vs  for different values of magnetic field.
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2
/Re= 0, 1 ,3 ,5, 8
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___A = B = 0 (without slip)
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f' (
)



 
Fig 3.represents the graph of Horizontal velocity profile f '( )  vs.   for different values of  magnetic 

field parameter 2Ha Re , for both with and without slip cases. Analysis of graph for both slip and 

without slip cases shows that the effect of increasing the values of magnetic field parameter is to 

decrease the magnitude of horizontal velocity flow. This is because of Lorentz force which increases 

the frictional drag (resistance), which opposes the motion of the fluid flow in the momentum 

boundary layer. With slip (A=B=0.1) decreases the momentum boundary layer thickness. 

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fig 4. Variations of velocity profiles vs  for various values of a.
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Fig 4.represents the graph of  horizontal velocity profile f '( )  vs.   for various  values of  

(a=1,3,4,5,6,7) for both with and without slip cases. From this plot, it is interesting to observe that 

for both with slip and without slip cases that as the values of a increases the dimensionless 
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horizontal velocity profile also increases. The maximum horizontal peak velocity is observed for a=7. 

Further, with slip (A=B=0.1) decreases the momentum boundary layer thickness. 
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Fig 5. Variation of velocity profiles vs  for various values of X.
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Fig  5.shows the variation of velocity profile with   for different values of dimensionless X, for both 

with slip and without slip case. From this figure, for both with slip and without slip cases, the 

horizontal velocity profile decreases with increase in the value of X in the momentum boundary 

layer but the significant effect is noticed for flow adjacent (near) to the stretching sheet. Further, 

with slip (A=B=0.1) decreases the momentum boundary layer thickness. 
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Fig 6. Variations of velocity profiles vs  for different values of momentum slip parameter A.
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Fig 6.shows the variations of velocity profiles vs  for some different values of the momentum slip 
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factor A. It is readily seen that A has substantial effect on the velocity profile. It is noticed that as the 

value of momentum slip parameter A=(0,0.1,0.2,1,5,10,100,200,1000),  increases, the velocity profile 

decreases near the surface of the sheet, and then increases away from it resulting a crossover in the 

velocity profile .For without slip for A 0 (total adhesion) and towards full slip as A tends to infinity. 

In the limiting case A   implies that the frictional resistance between the viscous fluid and the 

surface is eliminated and the stretching of the sheet does no longer impose any motion on the fluid, 

i.e. the flow behaves as though it were inviscid(frictionless). 

Figs 3,4,5,6 onecommon thing is noticed i.e. with slip decreases the momentum boundary layer 

thickness and the horizontal fluid velocity is found lower for the case of with slip, than  without slip 

flow. 

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fig 7. Variation of temperature profile  vs   for different values of a.

a = -5,-4,-2,-1,0,1,2,5,10
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Fig 7.depicts variation of dimensionless profiles ( )   vs.   for various values of a for both with  slip 

and without slip cases. For both slip and without slip cases, it is observed from this figure that 

temperature decreases with increase in the value of a (a = -5,-4,-2.-1, 0, 1, 2, 5, 10) .Further, it can be 

seen that the thermal boundary layer thickness decreases with increase in a. It is observed that 

thickness of thermal boundary layer is higher for the with slip case than the without slip case.  

Fig 8.shows the temperature Profile ( )   vs.    for various values of X= 1.5,2,2.5. It is noticed that 

temperature increases with the increasing value of X, Which results in increase of boundary layer 

thickness of the fluid. These results are true for both with slip and without slip boundary condition. 

Further, the temperature increases more in case of without slip (A=B=0) compared to with slip 

(A=B=0.1) boundary condition i.e. the effect of parameter X is more prominent(effective) in case of 

without slip compared to with slip.  
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Fig 8. Temperature profiles vs  for various values of  x.
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Fig 9.depicts the variation of the temperature profiles ( )   for various values of magnetic field 

parameter 2(Ha / Re 0,6,8) .For both slip and without slip, it can be seen that temperature 

profile  increases as magnetic field parameter 2(Ha / Re 0,6,8)  increases. This results in increase 

of thermal boundary layer thickness. This is due to the fact that magnetic field produces a Lorentz 

force which results in retarding force on the velocity which increases the temperature. Further, 

thermal boundary layer thickness increases more in case of without slip compared to with slip i.e. 

the effect of magnetic field is more prominent in case of without slip. 
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Fig 9. Temperature profile vs  for various values of magnetic field Ha
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Fig 10. Variations of temperature vs    for different values of Eckert number Ec.
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Fig  10.shows the temperature distribution ( )   vs.   for different values of Eckert number Ec. By 

analyzing the graph for both slip and without slip, it is noticed that temperature increases with the 

increasing value of Eckert number Ec = (0.0, 0.1, 0.3, 0.4, 0.5) which results in increase of thermal 

boundary layer thickness of the fluid. This is due to the fact that the heat energy is stored in the fluid 

due to the frictional heating. Thus the effect of increasing the Eckert number Ec is to enhance the 

temperature at any point in the fluid. It is interesting to note that the temperature overshoot near 

the stretching surface, there is significant heat generation due to fluid friction near the sheet. 

Further, thermal boundary layer thickness increases more in case of with slip compared to without 

slip i.e. the effect of Ec is more prominent in case of with slip. 
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Fig 11. Variations of temperature vs  for different values of Prandtl number Pr
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Fig 11.shows the effect of Prandtl number on the temperature  profile for both with slip and without 

slip cases respectively. It is noticed that temperature profile decreases with the increasing value of 
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Prandtl number (Pr= 1,1.5,2) where as  thermal boundary layer thickness decreases due to increase 

in Pr. From these plots it is evident that large values of Prandtl number results in thinning of thermal 

boundary layer. Further, thermal boundary layer thickness decreases more in case of with slip 

compared to without slip i.e. the effect of Pr is more prominent in case of with slip. 
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Fig 12. Variations of temperature profiles vs    for different values of thermal slip parameter B.
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Fig 12.shows the variations of temperature velocity profiles vs.   for some different values of the 

thermal slip factor B = (0,0.1,0.2,1,5,20,200,100). For B=0(no-slip ) the behaviour of graph is 

according to equation (5.2.14) i.e. it satisfies the  usual boundary condition (0) =1 From the plot it 

is noticed that the temperature profile decreases with increasing value of thermal slip parameter B, 

which results in thinning of the thermal boundary layer. In fact, the amount of with slip 1 (0)   

increases monotonically with B from without slip for B 0  (total adhesion) and towards full slip as 

B tends to infinity. In the limiting case B   implies that the frictional resistance between the 

viscous fluid and the surface is eliminated and the stretching of the sheet does no longer impose any 

motion on the fluid i.e. the flow behaves as though it were inviscid(frictionless). 
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Fig 13. Variation of Skin-friction coefficient vs Pr for differnt value of a.
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Fig 13.has been plotted to depict the variation of skin-friction coefficient vs. Prfor different values of 

a = (-1.5,-1.1,-0.5,0,1). Analysis of the graph shows that the effect of a is to decrease skin-friction 

coefficient. Similar effect is observed by increasing the value of the Prandtl number on skin-friction 

coefficient. The Skin-friction coefficient is found higher for the case of with slip than  without slip 

flow. 
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Fig 14. Effect of magnetic field on local Nusselt number with X.
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Fig 14.presents the effect of magnetic field (represented by the Hartman number) for local Nusselt 

number. It can be seen that an increase in the strength of the magnetic field leads to decrease in 

local Nusselt number. After observing the graph it is interesting to note that the behaviour of graph 

(i.e. decreasing) is true for both with slip and without slip. But local Nusselt number decreases more 

in case of with slip compared to without slip. 

5. CONCLUSIONS. 

 A numerical study corresponding to the convection heat transfer in steady flow region in 

exponentially continuous stretching surface with exponential temperature variations at the wall in 

the presence of the magnetic field, viscous dissipation, buoyancy force and internal heat generation 

has been presented. 

The following conclusions have been drawn from the present study: 

1. As the value of Pr and a increases wall temperature gradient '(0) decreases more in   case of   

without slip than with slip 

2. With slip decreases the momentum boundary layer thickness.    

3. The horizontal fluid velocity is found lower for the case of with slip compared to without slip 

flow. 

4. For both with slip and without slip cases, the increase of magnetic field parameter ( 2Ha / Re ) 

decreases the momentum boundary layer   thickness and   increases the thermal  boundary 

layer thickness. 

5. For both with slip and without slip cases, the increase of temperature distribution   parameter 

a increases the  momentum  boundary  layer (velocity profile)   thickness and       
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decreases the  thermal boundary layer  thickness.(thermal profile).  

6. For both with slip and without slip cases, the increase of X decreases the momentum 

boundary layer thickness  and    increases    the thermal boundary layer thickness. 

7. For both with slip and without slip cases, the increase of Ec increases the thermal  boundary 

layer   thickness whereas increase of Pr decreases the thermal boundary layer   thickness. 

8. For with slip case, the increase of momentum slip parameter A decreases the momentum 

boundary layer   thickness. For A = 0(i.e. without slip),  'f 0 1 the solution derived by  Crane  

[1970] is   recovered in the case of  velocity profile. 

9. For with slip case, the increase of thermal slip parameter B decreases the thermal boundary 

layer thickness. For   B =0(i.e. without slip),  0 1   in the case of temperature profile. 

10. For both with slip and without slip cases, the skin-friction coefficient decreases with increasing 

the value of  Pr and a . Skin- friction   coefficient   is found higher for the case of with slip than 

without slip flow. 

11. For both with slip and without slip cases, as the value of magnetic field parameter  ( 2Ha / Re ) 

and X increases, the local nusselt number decreases. Further, local nusselt  number decreases 

more in case of with slip than compared to without slip flow.   

Comparison of Wall- temperature gradient '(0) calculated by  

(1)  Magyari and Keller [1999] for Ha=Gr=Ec= =0         

(2)  Al-odat et al. [2006] for Gr=Ec= =0         

(3)  Dulal Pal [2010] for Ha=Gr=EC= =0 

(4) (i)  Present method without slip A = B =0, Ha=Gr=Ec= =X=0                                         

     (ii) Present method with slip   A = B = 0.1, Ha=Gr=Ec= =X=0  
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