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ABSTRACT 

This paper studies another generalization of the Gumbel distribution known 

as the Generalized Weibull-Gumbel distribution useful for modeling lifetime 

data. The mathematical properties of the new distribution are provided. The 

explicit expressions for its quantile, survival, and hazard functions were 

studied. Some plots of the distribution indicate that the Generalized Weibull-

Gumbel distribution can take various shapes such as symmetrical, left-

skewed, right-skewed etc. This fact implies that the Generalized Weibull-

Gumbel distribution can be very useful for data sets under various shapes. 

The implications of the plots for the survival and hazard functions means that 

the Generalized Weibull-Gumbel distribution (GWGD) will be appropriate in 

modeling time or age-dependent events, where survival rate decreases with 

time and failure increases with time or age. The method of maximum 

likelihood is used for estimating the model parameters and the density 

function for the minimum and maximum order statistics are also derived. We 

finally illustrate the usefulness of the proposed model.   

Keywords: Gumbel Distribution, Reliability analysis, Maximum likelihood 

estimation, order statistics and Generalized Weibull-Gumbel distribution. 

 

1 Background 

 The Gumbel distribution is a very popular statistical model due to its wide applicability. An 

extensive list of the Gumbel model applications can be obtained in Kotz and Nadarajah (2000). Some 

applications of the Gumbel model include: climate modeling, global warming problems, offshore 

modeling, rainfall and wind speed modeling Nadarajah (2006). The applications of this model can 

also be found in various areas of engineering, such as flood frequency analysis, network, nuclear, 
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risk-based, space, software reliability, structural and wind engineering Cordeiro et al. (2012). Due to 

its wide applicability, several works aimed at extending the Gumbel model have been carried out by 

many researchers among who are : Nadarajah and Kotz (2004), Nadarajah (2006), Cordeiro et al. 

(2012) and Andrade et al. (2015).  

 The cumulative distribution function (cdf) G(x) and probability density function (pdf) g(x) of 

the Gumbel distribution are given by.  
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with location parameter -∞ < µ < ∞ and scale parameter σ > 0 respectively.  

 There are several generalized families of probability distributions proposed by different 

researchers which have been used by others to extend so many standard or classical distributions to 

produce compound distributions found to be better than the classical ones. Some of these among 

others are the Kumaraswamy-G by Cordeiro and de Castro (2011), Gamma-G (type 1) by Zografos 

and Balakrishnan (2009), ßeta-G by Eugene et  al. (2002), McDonald-G by Alexander et  al. (2012), 

Gamma-G (type 2) by Ristic et  al. (2012), Gamma-G (type 3) by Torabi and Montazari (2012), Log-

gamma-G by Amini et al. (2012), Exponentiated T-X by Alzaghal et al. (2013), Transmuted family of 

distributions by Shaw and Buckley (2007), Logistic-G by Torabi and Montazari (2014), Gamma-X by 

Alzaatreh et  al., (2013), Logistic-X by Tahir et  al. (2015), Weibull-X by Alzaatreh et  al. (2013), 

Weibull-G by Bourguignon et al. (2014), Exponentiated-G (EG) by Cordeiro et al. (2013) and Beta 

Marshall-Olkin family of distributions by Alizadeh et al. (2015) e.t.c. Cordeiro et al. (2015) defined 

the generalized Weibull family of distributions (GW-G) with two extra parameters α > 0 and β > 0, 

who’s  pdf f(x) and cdf F(x) is given by; 
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and   

                    )(1logexp1)( xGxF 
                                                                  (4) 

respectively.  

Where      and      are the pdf and the cdf of any baseline continuous distribution respectively 

while )(1)(' xGxG   and α > 0 and β > 0  are the scale and shape parameters respectively.
 

The aim of this article is to formulate the Generalized Weibull-Gumbel distribution (GWGD) from the 

proposed family by Cordeiro et al. (2015).  

The rest of this article is organized as follows: In section 2, we defined the proposed distribution and 

provide a plot for its pdf and cdf. In section 3, we obtain some properties of the new distribution. In 

section 4, we provide the pdf of its smallest and largest order statistics. The maximum likelihood 

estimates (MLEs) of the unknown model parameters are provided in section 5. Finally, in section 6, 

we provide some useful conclusions. 

2.    The  GWGD 

 Using the pdf (1) and the cdf (2) of the Gumbel distribution with location parameter μєℝ and 

dispersion parameter σ>0. The pdf and cdf of the GWGD are obtained from equation (3) and (4) as 
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And the corresponding cdf is given by; 
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respectively. 

Graphical analysis of the pdf and cdf. 

 Given some values for the parameters α, β, μ and σ, we provide some possible shapes for 

the pdf and the cdf of the GWGD as shown in figure 1 and 2 below: 

 
Fig. 1: PDF of the GWGD for different values of  and   and some values of the parameters 

.10,,   andba  
 From figure (1) it can be seen that the GWGD distribution has various shapes such as 

symmetrical, left-skewed, right-skewed shapes. This means that distribution can be very useful for 

data sets with different shapes.  

 

Fig. 2: CDF of the GWGD for different values of  and   and some values of the parameters 

.10,,   andba  
 From the above cdf plot, the cdf increases when X increases, and approaches 1 when X 

becomes large, as expected.  
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3. Properties 

In this section, we study some properties of the GWGD distribution. 

3.1   Quantile function of the GWGD. 

 It is used for the generation of some moments of random variables such as skewness and 

kurtosis. It is also used to obtain the median and for generation of random numbers. It is derived by 

inverting the cdf of the distribution in question. 

The quantile function, say X=Q(u), of the GWGD can be obtained as the inverse of Equation (6) as; 
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Hence, the median of X from the GWGD is simply )2/1(
2

1 QX   is derived by setting u=0.5 in 

equation (7). Furthermore, it is possible to generate GWGD variates by setting X=Q(u), where u is a 

uniform variate on the unit interval (0,1). The lower and the upper quartile can also be derived from 

(7) by setting u=0.25 and u=0.75 respectively. 

3.2     Skewness and kurtosis 

 The classical measures of skewness and kurtosis which are well-known are given in this 

section. There are many heavy tailed distributions for which these measures are infinite. So, it 

becomes uninformative precisely when it needs to be. The Bowley’s Skewness Kenney and Keeping, 

(1962) based on quartile is defined as;  
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And the Moor’s Kurtosis Moors (1998) based on octiles is given by; 
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where        represents the quantile function. 

3.3     Reliability analysis of the GWGD. 

 The reliability of a system tells about its probability of survival or failure. The survival 

function gives the probability that the system will survive beyond a specified time. Mathematically, 

the survival function is given by;  

)(1)()( xFxXPXS                                                                                                     (10) 

Therefore, the survival function for the GWGD can be simplified to give; 
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For x>0, where α, β, μ and σ are the parameters. 

A plot for the survival function of the GWGD at different parameter values is as shown in figure 3 

below 
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Figure. 3: Survival function of the GWGD for different values of  and   and some values of the 

parameters .10,,   andba  
 From the graph in figure 3, we can see that the value of the survival function equals one at 

an initial time or early age and it decreases as X increases and remains constant as X equals zero. The 

implication of this behavior explains that the GWGD may be appropriate in modeling time or age-

dependent events, where the probability of life or success decreases with time or age, that is, it gets 

smaller as time goes on till it reaches zero. 
 The hazard function which is the probability of death or failure of an individual or a system is 

obtained mathematically as the ratio of the pdf, f(x) to the survival function S(X). It is given by; 
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Hence, the expression for the hazard rate of the GWGD is given by 
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where 0,,   and   . 
The following are some possible plots for the hazard rate at various values of the parameters  

0,,   and    as shown in F 

figure 4 below:  

 
Figure. 4: Hazard function of the GWGD for different values of  and   and some values of the 

parameters .10,,   andba  
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From the graph, we can see that the value of the hazard function decreases when X increases. It gets 

higher as the value of X decreases. This means that the GWGD may be appropriate for modeling 

events where risk or hazard decreases as time goes on.  

4        Order Statistics 

 In this section, we derive closed form expressions for the pdf of the ath order statistics of the 

GWGD. Suppose         is a random sample from the GWGD and let             denote the 

corresponding order statistic obtained from this sample. The pdf,         of the ath order statistic can 

be obtained by 
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Using (5) and (6), the pdf of the ath order statistics     , can be expressed from (14) as; 
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Hence, the pdf of the minimum order statistic      and maximum order statistic      of the GWGD 

are given by; 
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and 
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respectively. 

5   Estimation of Parameters of the GWGD. 

 In this section, the estimation of the parameters of the GWGD is done by using the method 

of maximum likelihood estimation. Let X1, - - -,Xn be a sample of size ‘n’ independently and identically 

distributed random variables from the GWGD with unknown parameters α, β, μ, and σ defined 

previously. The pdf of the GWGD is given as  
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Differentiating   partially with respect to α, β, μ and σ respectively gives; 
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give us the maximum likelihood estimates of parameters  ,, and  . However, the solution 

cannot be gotten analytically except numerically with the aid of suitable statistical software like R, 

SAS, e.t.c when data sets are available. 

6     Conclusion 

 This article studied a new four-parameter model named the GWGD. Some mathematical and 

statistical properties of the distribution have been studied appropriately. We have derived explicit 

expressions for its survival, hazard and quantile functions. Some plots of the distribution showed 

that the GWGD distribution has various shapes such as symmetrical, left-skewed and right-skewed. 

This means that the GWGD can be useful in modeling data sets with various shapes. The significance 

of the plots for the survival function is that the GWGD can be appropriate in modeling time or age-

dependent events, where survival decreases with time while failure increases with time or age. We 

also obtained the pdf of its minimum and maximum order statistics. We estimated the model 

parameters using the method of maximum likelihood estimation.  
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