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1. Introduction

Many authors have studied topological spaces with separation axioms between T; and T, and also
those which are weaker than T, ( [1], [2], [3], [4], [5], [6], [7], [8], [9] ,[10], [11], [12], [13], [14]). In
this paper we have defined three kinds of locally Hausdorff spaces. We have used definitions and
terminology of [12] in general.

Definition 1.1

A topological space X will be called a locally Hausdorff space of the first kind if each point x in X is
contained in a closed set F, which is Hausdorff.

Definition 1.2
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A topological space X will be called a locally Hausdorff space of the second kind if each point x in X is
contained in an open set G, which is Hausdorff.

Definition 1.3

A topological space X will be called a locally Hausdorff space of the third kind if each point x in X is

contained in an open set G, such that GX is Hausdorff.

Relationship among the above three classes of spaces and properties of the spaces of the first kind
have been studied. In particular, it has been proved that the topology of each space in this class
contains the cofinite topology. This class has been proved to be identical with class of T;-spaces. We
recall ([2], [4], [11]) that a topological space X is called a T;-space if any one of the equivalent
conditions (i), (ii) and (iii) hold, where (i), (ii) and (iii) are as follows:

i) For each pair of distinct elements x, y in X, there exists an open set G,, such that XeGXy and
yeG,

ii) For each pair of distinct elements x, y in X, there exist open set G,, and H,, such that XEny
,y¢Gand yeH , ,xgH, .

iii) For each x in X, {x} is closed.

While (i) and (ii) occur in definitions, (iii) is usually proved to be their equivalent (see [2] p-
47, [12] p-100, [11] p-100).
The locally Hausdorff spaces of the second and the third kinds will be called T,-spaces and T,-spaces
respectively. It has been shown that T,= T, =T, = T3, a, be[1, 2], where the last implication is not
reversible.
We have stated a conjecture on the structure of a locally Hausdorff space of the first kind using
Hausdorff spaces and cofinite spaces as building blocks and formation of products, union-spaces,
quotient spaces and subspaces as glues.
Four characterizations of a T,-spaces have been given one of which describes T, as a natural
generalization of T,. At the end of this paper, new topologies have been introduced in a locally
Hausdorff space of the first kind, i.e., a T;-space, which makes the latter Hausdorff. Throughout the
section 2 and section 3, a locally Hausdorff space of the first kind will simply be called locally
Hausdorff.
Example 2.1
Every Hausdorff space is locally Hausdorff.
Example 2.2
Let X be an infinite set and let Cx be the cofinite topology on X. Then (X, Cx) is locally Hausdorff. A
proof of this statement directly from the definition is as follows:
Let a€X and b,c,d be three distinct points of X each of which is different from a. Then {a,b,c,d} is a
closed subset, say F, of X. Here a€X. Then {a,b}\U F", {a,c} U F,{a,d} U F,{b,c} U F"{b,d} U F,{c,d} U
F* are open subsets of X. And so, V,={a,b}, V,={a,c},Vs={a,d},V.={b,c},Vs={b,d},Vs={c,d} are open sets in
F.
Now a and b are separated by V, and Vs, a and c are separated by V,; and V¢, a and d are separated
by V; and Vg, b and c are separated by V; and Vg,b and d are separated by V; and V,, c and d are
separated by V, and Vs.
Thus F is Hausdorff. Hence X is locally Hausdorff.
Comment 2.1
Surprisingly, this space (X, Cy) is anti-Hausdorff ( see [10],[13]), i.e., no two distinct points of it can be
separated by disjoint open sets.
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Example 2.1

Every T;-space is locally Hausdorff.

In fact the converse is true too.

Thus we have:

Theorem 2.1

A topological space is locally Hausdorff if and only if it is T.

Proof: Let X be a topological space. First suppose X is T;. Then for each x in X, {x} is closed. Now, {x} is
Hausdorff. For, if not, there exist distinct points y, z €{x}, such that y and z cannot be separated by
disjoint open sets. Since no two distinct points exist in {x}, this is absurd. Hence x is contained in the
Hausdorff closed subspace {x}. Thus X is locally Hausdorff.

Conversely, suppose X is locally Hausdorff. Let x;, X, be two distinct points in X. Since X is locally
Hausdorff, there exists closed Hausdorff subspaces F, and F, of X such that x;EF,, x,EF,. If both x;, x,
belong to either F, or F,, say F;, then there exist disjoint open sets G; and G, in F; such thatx,€G,,
x,€G,.Now G;=V, N F and G,=V, N F, for some open sets Vy, V, in X. Then, x,€Vy, X; €V, , X,EV,,
X, ¢V, . Now, if both x;, X, do not belong to F; or F,, then we may assume that x;€Fy, X, € F, ,x, €F,,
X, 2 F.So,x e ), X, & F1C, X, € F,X, ¢ F,where F"and F, are open sets in X.

Thus in each case the T;-condition is satisfied.

Comment 2.2

In view of Theorem-2.1, the space (X, Cyx) is easily seen to be locally Hausdorff since each singleton
subset of X is closed.

Comment 2.3

The topology of an infinite locally Hausdorff space contains the cofinite topology. This is so, because
for an infinite locally Hausdorff space X, every singleton subset, and hence, every finite subset is
closed. In fact, a topological space (X, J) is locally Hausdorff if and only if 3 contains the cofinite
topology. This is obvious.

Although, as mentioned earlier, the topology of an infinite locally Hausdorff space X contains the
cofinite topology on X, it need not be equal to the cofinite topology. The usual space R" being
Hausdorff is locally Hausdorff with the topology strictly finer than the cofinite topology.

We give below two examples of locally Hausdorff spaces which are not Hausdorff but still whose
topologies are strictly finer than the relevant cofinite topologies :

Example 2.3

Let A be an infinite set, and for each « € A, let X, be an infinite set with the cofinite topology. Let

X= HA X, be the product space.

Let G=I1 G, where G, ={x

aehA

- X, }". Then each G_ is finite but G is not finite. Also G is open in

a’
X.
Example 2.4

Let X; be an infinite set with the cofinite topology J,, and let X, be a finite set disjoint from X; with

the discrete topology. Let X= (X;UX,, 5 ), where Jis the topology on X generated by 3, U3, i.e., X
is the union space of X; andX, . Then Jis strictly finer than the cofinite topology on X, since the
(finite) subsets of X, are open in X but their complements in X are not finite. X is not Hausdorff, since
the distinct points in X; cannot be separated by disjoint open sets in X.

MALLIKA MITRA et al., 3
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In particular, we may take X;=IN or fzand X>={i, 2i, 3i, ..., 10i} or {\/E,\/é,\/g,ﬁ}, or {

Comment 2.4

I Let X be a compact locally Hausdorff space. Then, for each point x€X there exists a compact
Hausdorff subspace K of X such that x€ K. This is so because every closed subset of a
compact space is compact.

Il. Let X be a compact locally Hausdorff space, then, every point x€X is contained in both a
closed Hausdorff space of X and a compact Hausdorff subspaces of X.

Example: Let X= [a,b] with the usual topology and Y=iz ={ip|p€Z} with the cofinite topology. Then

XxY is a non-trivial compact locally Hausdorff spaces.

2. Here we prove a number of theorems yielding newer classes of locally Hausdorff spaces.

Theorem 3.1

Every subspace of a locally Hausdorff space is locally Hausdorff .

Proof: Let X be a locally Hausdorff space and let Y be asubspace of X. Let y1, y, be two distinct points

in Y. By Theorem-1, X is Ty, and so, there exist open sets G; and G, in X such that y,€ G, ¥, ¢G,,
V2€ Gy, Y, G, . LetV, =Y NG, V, =Y NG, . Theny,€ Vy, Y, €V,,v,€ G5, ¥, €V,. HenceYisT;
and so, Y is locally Hausdorff.

Corollary-1

Let A and B be two locally Hausdorff subspaces of a topological space X. Then, AN B is locally
Hausdorff

Theorem 3.2

Let X be a topological space and let A and B be two locally Hausdorff subspaces of X. Then, AUB is
locally Hausdorffif either both A and B are open or both A and B are closed.

Proof: Suppose both A and B are open. Let X, Yy € AUB. If both x and y belong to A then there

exists open sets G and H in A such thatxe G,x¢ H,ye H,y ¢G. Since A is open in X, G and H
too are open in X. Similarly, if both X,y € B,then Jopen sets G, H in X such thatxe G,x¢ H,
yeH,yeG.

Lastly, if one of x and y belongs to A and the other belongs to B, sayXxe A, X¢ B,y e B,y ¢ A then
we will still have the above situation with G=A, H=B. Thus AU B 5 T, and hence locally Hausdorff.
Now suppose both A and B are closed. LetXe AUB. Then xXe A, or X< B, supposexe A. A
being locally Hausdorff, there exists a closed subset F of A such that X< F, and F is Hausdorff.
Since A is closed in X, F is closed in X, and so in AU B . Similarly, if X e B, then there is a closed

subset P which is Hausdorff and is closed in AU B . Thus AU B is locally Hausdorff.
Theorem 3.3

Let (X;,3;) and (X,,3,) be two disjoint locally Hausdorffspaces. Let3:<31U52> be the

topology generated by 3, U 3, 0n X=X, U X, . Then (X, 3 ) is locally Hausdorff.

Proof: We shall show that (X, 3 ) is T;. Let x,y be two distinct points in X. If x,y both belong to X;or X,,
say to X;. Then there exist open sets V, W in X, and hence in X, XeV,xgW, yeW,y eV . If x
and y belong to X; and X, respectively, then x€ X, X & X,, y€ X,, Y & X,, and Xy, X, are open sets
in X. Thus X is T4, and so, locally Hausdorff.

We call (X, I ) the union space of (X,, J3;) and ( X,,,).

MALLIKA MITRA et al., 4
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An exactly similar proof will yield
Theorem 3.4

Let (X ,,3,) be a non-empty family of locallyHausdorff spaces, then (X, 3 ), where X=U X, and

JI= <U3a > , the topology generated by U3, is locally Hausdorff.
a a

Theorem 3.5

Let {X ,, 3, } be a non-empty family of topological space, and let X= 11 X, the product space. Then

AEN

Xis locally Hausdorff spaces if and only if each X , is locally Hausdorff.

Proof: We first assume that each X_ is locally Hausdorff and prove that X=1I1 X_is locally

aen

Hausdorff too. LetX:{Xa}e X . Since each Xa is locally Hausdorff, for each a, there exists a

closed Hausdorff subspace F, of X_ suchthatX, € F_ .ThenF=1IF, isa closed subspace of X.

QEN

Hence X is locally Hausdorff.

Conversely suppose that X is locally Hausdorff. We shall show that each X, is locally Hausdorff. Let
IT, : X = X be the projection map. Let X, € X, . Then X, =I1_(X),for some xe X . Let {F,}
be the collection of all closed subsets of X, which contains X, . Let, F; = H;l(Fal ), for eachi. Then
Fi 's are closed subsets of X and contains x. Since X is locally Hausdorff there exists iy such that Fio

is Hausdorff . Then Fio =I1,(F, )isHausdorff. For,if X, , Y, be two distinct elements of F, ,

i i i o

consider the elementsX, , Y, such that X, #Yy, wherell,(X, )=TI1,(y; ), (a# B). Then
o 0 io ip 0 0

X, #VYi, and so, X being locally Hausdorff, there exist disjoint sub basic open sets GiO ) Hio such

that X, €G, .y, €H; . Then I1,(G; ) =G, and I1,(H; )=H, are disjoint open sets in X,

withX, €G, ,Yy, €H, .Hence F, isHausdorff. Thus X is locally Hausdorff.
ig io ig ]

iy
This result was proved in [6], [9] in a different manner.
Theorem 3.6

Let X be a locally Hausdorff space and R an equivalence relation on X. Then % is locally Hausdorff.

Proof: Let IT: X — % be the projection map. Let X e % Letxe H’l()_() . Then there exists a

closed subset F of X such that xe F and F is Hausdorff. Since F is open in X and IT is both open and

continuous, TI(F°) is open in%. Hence (TT(F))® =TI(F°)is open in%. Thus TI(F) is

closed in % .Let X,y be two distinct points in I(F). Lety e ITY(y), zeITY(z). Theny, z are

distinct points in F, and so, there exist disjoint open sets G, H in F such that y € G,z € H.Then

I1(G) and TII(H)are disjoint sets in T1(F)and y eIl(G),z eI(H).Thus I1(F) is Hausdorff.
X/ -

Hence A is locally Hausdorff.

Theorems 3.1, 3.3, 3.4, 3.5 and 3.6 can be summarized as follows:

Theorem 3.7

The class of all locally Hausdorff spaces is closed under the formation of products, union subspaces
and quotient spaces

MALLIKA MITRA et al., >
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We shall now give here two examples which will prove that the product of locally Hausdorff spaces
at least one of which is not Hausdorff may or may not be Hausdorff.
Example 3.1

Let X= R with the usual topology and Y is Z with the cofinite topology. Then Y is not Hausdorff but
XxY is Hausdorff.
Example 3.2

Let X= Z with the cofinite topology and Y=i Kz:{i nine ”Z} with the cofinite topology. Then XxY
islocally Hausdorff but not Hausdorff. For if (x, y) and (x/, y/) are two distinct points in XxY, every pair

of open sets G and H in XxY with (x, y) € G,(x/, y/)e H, there are open sets GX,GL inX, H yr H; inV

such that (x, y)e G, xH v ', y)e GX, x H E Since X, Y have the corresponding cofinite topologies

G, ﬁG; 0, H N H; # ® . HenceG N H # ®  Thys XxY is not Hausdorff.

Remark: The proof in example 3.1 shows that, if X is a Hausdorff space and Y is any topological
space, then XxY is Hausdorff, i.e., the product of a Hausdorff space with any space is Hausdorff.

The class of all locally Hausdorff spaces, i.e., T;-spaces can be characterized as follows:

Theorem 3.8.

A topological spaces (X, J ) islocally Hausdorff spaceif and only if either (X, 3 ) is finite discrete space
or X is infinite and I contains the cofinite topology on X.

We now state a conjecture regarding the structure of a locally Hausdorff space and hence regarding
the classification of all locally Hausdorff spaces.

Conjecture 3.1

The class of all locally Hausdorff topological spaces is formed from (i) the class of all Hausdorff
spaces and (ii) the class of all infinite sets with the corresponding cofinite topologies with the help of
(1) Products, (2) Union spaces, (3) Subspaces and (4) Quotient spaces.

3. Relationship among the various kinds of locally Hausdorff spaces.

Proposition 4.1

Every locally Hausdorff space of the third kind is a locally Hausdorff space of the first kind.

Proof: This is obvious.

Proposition 4.2

Every locally Hausdorff space of the third kind is a locally Hausdorff space of the second kind.

Proof: Let X be a locally Hausdorff space of the third kind. Then, for each x € x, there exists an open

set G in X with xe G such that 6 is Hausdorff. Then G is Hausdorff, and so X is locally Hausdorff of
the second kind.

Proposition 4.3

A locally Hausdorff space of the first kind need not be a locally Hausdorff space of the second or
third kind.

Proof: Let X be an infinite set with the cofinite topology. Then X is locally Hausdorff space of the first
kind. Let V be an open set in X with xe V. Then V is infinite. The topology of V is the cofinite topology
since V —G < X —G which is finite. So V is not Hausdorff. Hence X is not locally Hausdorff space of

the second kind. Now \7 =X, which is not Hausdorff. So, X is NOT locally Hausdorff space of the third
kind.

Proposition 4.4

Every locally Hausdorff of the second kind is a locally Hausdorff space of the first kind.

MALLIKA MITRA et al., 6
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Proof: Let X be a locally Hausdorff of the second kind. Let X, yeX and X# Y. 3 open sets G, and

H y in X such that X€ G,,ye Hy' and both G,and Hy are Hausdorff. For all x;, X, € G, EIGXl,GXz

(open in G,) such that X; €G, ,X, €G, , G, NG, =@ HereG,andG, are open in X, since
G, =V, NG,,G, =V, NG, for some open sets V ,V, inX.

If any of x and y belongs to Gy~ H,, then x ,y both belong to G, or to H, , and so, x & y can be
separated by disjoint open sets in G, (or H, ), and hence by open sets in X . If none of xe G,, x¢ H,
andyeH,, y¢G;.

Since T,=T,, each pair of points x, y in X satisfies the condition for T..Thus, X is locally Hausdorff of
the 1° kind.

Comment: We thus see that the classes of all locally Hausdorff spaces of the second and third kind
are proper subclasses of the class of all locally Hausdorff spaces of the first kind i.e., of T;-space.
Thus, T,=T,=T,=>T,. The last implication is not reversible. We have not been able to decide
whether the first two implications are reversible or not. We know ([1]) that {Hausdorff spaces} — {kc-
spaces}c {us-spaces}c {T;-spaces}, the inclusions being strict everywhere. Here a kc-space is one in
which every compact subset is closed, and a space in which every convergent sequence has a unique
limit is called a us-space. These terms were introduced by Wilansky [1]. Two more classes of spaces
viz., Si-spaces and S,-spaces have been proved to exist between T, and T, by Aull [3]. An S;-space is a
us-space in which every convergent sequence has a subsequence which does have a side point i.e., a
limit point which is not the limit of a sequence. An S,-space is a us-space in which no convergent
sequence has a side point.

We do not know the relationship of T, —spaces and T,-spaces with kc-spaces, us-spaces, S;-spaces
and S,-spaces.

4, Maximal and Minimal T;-topologies

Theorem 5.1

The collection of all T;-topologies on a non-empty set X has a smallest member, viz., the cofinite
topology Cx on X.

Proof: Let X be a non-empty set.

Let C be the collection of all T;-topologies and I=N3J, . Then Jis a Ty-topology. For if xe X, xgV
a

foreachV, e 3 ,.let Ve 3.Then, Ve 3 ,Va. Hence xgV. Thus {x} is closed in (X, 3 ). Hence
Jis a T;-topology.

Since each T;-topologyon X contains the cofinite topology C on X, and since C itself is a T;-topology.
So3 =C.

Definition 5.1.

For a non-empty class {3  } of topologies on X, the topology 3 generated by U3, will be called
a

the union topology on X defined by {J , }.

It is clear that if each 3  is a T;-topology, 3 | too, is a T;-topology.

Assuming the truth of the conjecture 3.1, we see that the following is true:

Conjecture 5.1.

The largest T;-topology on a non-empty set X is the union topology defined by the class of all
Hausdorff topologies on X.

5. Hausdorffification of the locally Hausdorff space of the first kind

Here we alter the topology of a locally hausdorff space of the first kind to make it Hausdorff.

MALLIKA MITRA et al., 7
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(A) Let (X, 3 ) be locally Hausdorffspace of thefirst kind. We form a topology 3 on X from 3 as
follows:
For every pair of disjoint points x, y in X, which cannot be separated by disjoint open sets, we choose

a pair of open sets GX,HyeS suchthatxe G, ,x ¢ Hy, ye Hy,ngX.Such GX,Hyexistsince

X is locally Hausdorff, and hence T;. Let S be obtained from I by replacing G, and Hy by

~

U,,=6G,—H,V,, =H, =G, respectively, for each such pair x, y €X. Let 3 denote the

topology generated by S on X. Then (X,g) is a Hausdorff space. (X,g)will be called a
Hausdorffification of the first kind for the space (X, 3 ).

Comment: Since J depend on the choice G, and H,, J is not unique.

However, we give below another kind of Hausdorffification which yields a unique Hausdorff topology
—/

I onX:

(B) Let (X, 3 ) be locally Hausdorff space of the first kind. Let A be the set of all pairs {x, y} in X
such that x and y cannot be separated by disjoint open sets in X. Since X is T, for pair {x, y} in A,
there exist open sets G4, and H, ,, in X such thatXe vay, y e‘GX’y, ye Hy’x,xg Hy'X . Let

Vx,y=uGX,ya”dWy,x =uUH the union being taken over all such special G, ,'s and H, 's

XeW

y,x’

respectively. Clearly, xeV,, , y&V,,, and yeW andV,, and W,, are the largest such

y,x? y,x’

open sets.
Let v ={Vyy =Wy« | {X, y}€ A}, W={W, -V, |{X, y}€A}. Let 3 be the topology on X which is generated
by I UyLUW.

Then (X, 5 ) is Hausdorff and will be called the Hausdorffification of the second kind for the space (X,

3 ). Clearly (X, 3 ) is unique.

If instead of V,, -W, x and W, , -V,, we would have considered G,, -H, and H,, -G,, and called then
G and H respectively, then the topology generated by I3 W G U H would have given us a Hausdorff
topology on X. But it would not have been unique.

Example 6.1

Let A be an infinite set, and J the cofinite topology on X. Then I is unique and is the discrete
topology on X.
Example 6.2

Let X=IT X, where X, s are the distinct infinite sets with the corresponding cofinite topologies 3,
oa

. Then (X, 3) is locally Hausdorff space of the first kind, where Jis the product topology on X. Each
(X, ,50{) is a discrete space for each «r, but (X, 3 ), the product space of the collection { (X, ,ga) 1
is not a discrete space.

6. Characterisations of T,-spaces

We here digress and prove a few characterisations of a Hausdorff space which resemble the
definition of a 3, -space.

We now state and prove below four characterisations of a Hausdorff space.

Theorem 7.1

For a topological space X, the following five statements are equivalent:
(i) X is Hausdorff,

MALLIKA MITRA et al., 8
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(ii) For each pair of distinct points x, y in X, there exists an open set Gy, in X such that xe Gy, y
zGy.
(iii) For each pair of distinct points x, y in X, there exists an open sets Gy, and Hy in X such that x

eGyy, Y& axy, yeHy, XEﬁyx.

(iv) For each compact subset K of X and for each x € X with x¢ K, there exist disjoint open sets G
and Hin x such that Kc G, ye H;

(v) For each pair of disjoint compact subsets K; and K, of X, there exist disjoint open sets G; and
G, of X such that K; £ G4, K, C G,.

Proof: (i) = (ii)

Let X be a Hausdorff space and let x, y in X (x#y). Then there exist disjoint open sets G and H such

thatxe G, yeH. ltis clear thaty ¢ G. (i) follows by writing G,,=G.

(i) = (i)

Let (ii) hold. Let X, ¥ € X, with x#y. Then there exists an open set H,, in X such that ye H,, and G,,
M Hyy, =® . Hence X is Hausdorff.

(ii) < (iii). Obvious.

(iv)=> (i). Obvious since every singleton set is compact.

(i) = (iv). Let (i) hold. Let X be Hausdorff and let K be a compact subset of X and X, € X with

X, & K. Since X is Hausdorff, for each xe K, there exist open sets G, and H, in X such that xe G,,

X, € H,, and G~ H, =®. Since K is compact and {G,} is an open cover of K, {G,} has a finite

X’

subcover {G, , .., G, },say. letG=G, U .. U G, andH=H, N .. " G, .Then G and H are

open and disjoint, and K G, X, € H . Thus (iv) holds.

(v)=> (i). since every singleton subset is compact, it is obvious.

(i) = (v). It will be sufficient to prove that (iv) = (v). It is clear that the method of proof of (i) = (iv)
can be similarly used to prove that (iv) = (v).

[N.B. Wilansky too proved the equivalence of (i) and (iv) in his book [2]]

As mentioned in the second paragraph of the abstract, the conditions (ii) and (iii) in the statement of
the above theorem regarding a T,-space closely resemble the conditions (i) and (ii) in page 2 for T;-
space
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