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1 Introduction

In his lost notebook[12] S. Ramanujan has recorded the following beautiful reciprocity theorem.
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The first proof of (1.1) was given by G. E. Andrews[3]. Since then several proofs and
applications of (1.1) were independently given by D. D. Somashekara and S. N. Fathima [13], T. Kim,
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Somashekara and Fathima [11], S. Bhargava, Somashekara and Fathima [7], C. Adiga and N. Anitha[2],
B. C. Berndt, S. H. Chan, B. P. Yeap and A. J. Yee [6], and S.-Y. Kang [10], D. D. Somashekara, K.
Narasimha Murthy, S. L. Shalini [14], D. D. Somashekara and K. Narasimha Murthy [15]. For more
details, refer to the book by Andrews and Berndt [4]. Kang has also obtained a four-variable
generalization of (1.1), which is equivalent to the identity of Andrews [Theorem 6, 3] and was further
generalized by Z. Zhang [16].

The main objective of this note is to give a simple and elegant proof of (1.1). Using the Heine’s
transformation[9],
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the Jacobi’s triple product identity [9]
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and a reformulated Abel’s lemma[1] on summation by parts given by W. Chu [8]. In his paper, Chu
defines the backward and forward difference operator V and A, respectively, for an arbitrary sequence

{tx}as
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Then Abel’s lemma was reformulated as

provided that the series on both sides are convergent and A;B,_; — 0as
2. A Proof of (1.1).
Settinga = —1/a, f§ = q, z = —bgandlety — 0in(1.2), we obtain
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Next
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On using (2.1) and (2.2) on the left side of (1.1) and after some simplifications we obtain
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Now let
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Then

1
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Iterating ‘m’ times and letting m — oo we obtain
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Using (1.3) with z = b/a, on the right side of (2.4) we obtain (2.3) and hence (1.1).
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