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_m ABSTRACT

; ; In this study, we show that a * - homomorphism ¢ : A — B between unital

BOMSR commutative C*- algebras A and B which verify rg ((p(x)) = ry(x) for any
TR 3 X € A, satisfies the property to preserve spectrum and hence adjoint

mapping @ : A(B) = A(A) is surjective, that is, @* maps maximal ideal

space of B to maximal ideal space of A.
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1. INTRODUCTION
In this paper, the relation between the property preserve spectrum of a homomorphism

from one C*- algebra to another, topological divisor of zero and positive elements of these C*-
algebras and the mapping of their maximal ideals is examined.
Let A be a unital Banach algebra and x € A. If there exists a sequence (y;,) in 4 such that ||y,|| =1
for eachn € Nand

lim xy, = lim y,x =0,

n—eo n—eo
then x is called a topological divisor of zero. [5] If A is a unital commutative Banach algebra and x is
a topological divisor of zero in A, then x is not invertible in A. [3]
If A is a unital Banach algebra, then the set {1 € C: (x — A1,) & A~ '} is called spectrum of x in 4,
denoted by g, (x), where A~! denotes the set of invertible elements of A. g4(x) is a nonempty
compact subset of C for every x in A. The resolvent set of x is defined by p4(x) = C\ dg4(x). The
spectral radius of x is characterized by 14(x) = sup{ || : A € g4(x)}. If A is a unital commutative
Banach algebra, then for every x in 4, the limit

1
() = lim [~

exists. [5]
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Let A be a complex algebra. An involution on A is a mapping * : x - x* from A into A satisfying the
following conditions.
i. (x+y) =x"+y",

ii. (Ax)* = Ax*,
iii. () =y*x*,
iv. )" =x

forallx,y € Aand A € C. Then A is called a * - algebra or an algebra with involution. If * - algebra A
is a Banach algebra and involution on it is isometric; that is, ||[x*|| = ||x]|| for all x € A, then A is
called a Banach * - algebra. If * - algebra A is a Banach algebra and its norm satisfies the equation
llx*x|| = ||x||?> forall x € A4, then A is said to be a C*- algebra. [3]
Let A be a * - algebra. An element x € A is said to be hermitian if x* = x. Let A be a unital C*-
algebra. For each hermitian element x of 4, 5 (x) = ||x]|. [2]
2. PRELIMINARY NOTES
When A is a commutative complex algebra with unit, every proper ideal of A is contained in a
maximal ideal of A and every maximal ideal of A is closed. The set of all maximal ideals in A is
denoted by M(A). Let A is a complex algebra and ¢ is a linear functional on A. If p(xy) = dp(x)p(y)
for all x,y € A, then ¢ is called a complex homomorphism on A. The set of nonzero complex
homomorphisms on A is denoted by A(A). For x in commutative Banach algebra A, X : A(A) - C,
Gelfand transform of x, is defined by £(h) = h(x) for every h in A(A). The set A={a:a € A} is
called the set of Gelfand transforms on A. [5]
The e-open neighbourhood U, (hg, ay, ..., a,) at any hy € A(A) with respect to the Gelfand topology
is given

{h € A(4):16;(ho) — a; ()| < &}
where e > 0,n € Nand qy, ..., a, are arbitrary elements of A. [3]
The followings are true when A is a unital commutative Banach algebra.
i. Every maximal ideal of A is the kernel of some h € A(A).
ii. If h € A(A), then the kernel of h is a maximal ideal of A.
iii. An element x € A is invertible in A if and only if h(x) # 0 for every h € A(4).

iv. A € o(x) if and only if h(x) = A for some h € A(A). [5]
Theorem 2.1. Let A and B be C*- algebras with identities such that A € B. If x € A, then g4(x) =
op(x). [1]

Definition 2.2. Let A and B be C*- algebras, ¢ : A— B be a homomorphism. If ¢ satisfies
@(x*) = @(x)* forall x € A, then this mapping is called a * - homomorphism. [2]

Definition 2.3. Let A be a unital C*- algebra. A hermitian element x of A is said to be positive if
04(x) € [0,°0). We write x = 0 to mean that x is positive, and denote by A, the set of all positive
elements of A. [1]

Theorem 2.4. If A is a unital C*- algebra and x is a hermitian element of A, then the following
statements are equivalent.

i x = 0.

ii. x = h? for some hermitian h in A.

iii. x = y*y forsome yin A. [1]

Theorem 2.5. Let A and B be C*- algebras. If ¢ : A —» B is a * - homomorphism, then ¢@(A4) is a C*-
subalgebra of B. [4]

Theorem 2.6. Let A and B be unital commutative C*- algebras, ¢ : A = B be a * - homomorphism
with ¢(1,) = 1. Then g, (x) = o5 (@(x)) foreachx € Aifand onlyif A~ = ¢~ 1(B™1). [6]
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Theorem 2.7. Let A and B be unital commutative C*- algebras, ¢ : A = B be a * - homomorphism
with @(1,) = 15. In that case, if x = 1, whenever @(x) = 13 for each x € 4, then @(471) =
P~ (7]
Theorem 2.8. Let A and B be unital commutative C*- algebras, ¢ : A = B be a * - homomorphism.
Then ¢*A(B) c A(A). [6]
Theorem 2.9. Let A and B be unital commutative C*- algebras, ¢ : A = B be a * - homomorphism
with ¢(1,) = 15. Inthat case, A™! = ¢~ 1(B~1) if and only if p*A(B) = A(A). [6]
Theorem 2.10. Let A be unital commutative C*- algebra, and x an element of A which does not have
a left inverse. Then x*x is not invertible in the C*- subalgebra B generated by 1 and x*x , so there
exist y1,¥,, ... € B such that ||y, || = 1 and ||y, x*x|| = 0 as n — oo. Hence if x € A is not invertible,
X is a topological divisor of zero. [2]
3. RESULTS
Theorem 3.1. Let A and B be unital commutative C*- algebras, ¢ : A = B be a * - homomorphism
with ¢(14) = 15. Then rB((p(x)) = 14(x) for each x € A, if and only if ¢ is one - to - one.
Proof. Let 75 (¢(x)) = 74(x) for each x € A,. Since a*a is positive for each a € A by Theorem 2.4,
le@I1? = llp(a* )|l = rp(p(a*a)) = y(a*a) = lla*all = |lall*.
Hence ¢ is one - to - one.
Conversely, assume that ¢ is one - to - one. There exists y € A such that

(x — A1)y = y(x — A1,) = 14 for each 1 & g,(x). Thus it is obtained that ¢@(x — A1,).¢(y) =
o). o(x —2A1y) = p(1y) =1pand 1 & aq,(A)((p(x)). Also for each 1 ¢ cr(p(A)(go(x)), there exists
yEA such that @(x—A11).0) = ). ¢(x — A1) =15. In this case (x—A1y)y =
y(x — A1,) = 1, by hypothesis and so A & g, (x). Thus, we have seen that o,,4)(@(x)) = g4(x)
for each x € A.
In the other hand, o5 (y) = 0,,4)(y) for each y € ¢(A) from Theorem 2.1 and Theorem 2.5. Hence
Op ((p(x)) = ay(x) for x € A, and this implies 1 (go(x)) = ry(x) foreach x € A,.
Theorem 3.2. Let A and B be unital commutative C*- algebras, ¢ : A - B be a
* - homomorphism with ¢(14) = 1. Then the following statements are equivalent.

i. rB(tp(x)) = 14(x) for each x € A.

i. r3(9(x)) = ry(x) foreach x € A,.

iii. [lo(x)|| = 1 whenever ||x|| = 1 foreach x € A.

iv. @ is one - to - one.
V. x = 1, whenever ¢(x) = 15 foreach x € A.
vi. op(9(x)) = g4(x) for each x € A.
vii. Al = 1 (B™D).
Proof.

(i) = ii)) It follows from A, c A.
(ii) = iii)) Let rB(qo(x)) = 1r4(x) for each x € A,. Since a*a is positive for each a € A by
Theorem 2.4, ||@p(a)|| = ||lal|. In that case, ||¢(x)|| = 1 whenever ||x|| = 1 for each x € A.

(iii) = iv)) Let ||o(x)|| = 1 whenever ||x|| = 1 for each x € A. Given any x € A, since ”g” =1

whenever ||x|| =a # 0, ”(p (g)” = 1 by hypothesis and so it is obtained that |[@(x)|| = |@(a)| =

a = ||x||. Also if [|x|| = 0, then ||@(x)|| = 0. Therefore it is easily seen ||@(x)|| = ||x|| foreachx € A
and @ is one - to - one.
(iv) = v)) Let ¢ be one - to - one. Then, since ¢ (x) = ¢(1,) whenever ¢(x) = 15 for each x € 4,
x = 1, by hypothesis.
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(v) = vi)) Let x = 14 whenever ¢(x) = 15 foreach x € A.

Since @(x)— A1z =@p(x—21,) € p(A)~! for each A€ a(p(A)(tp(x)), we write
x—A1,€& A"Y by Theorem 2.7 and so A€ay(x). Also we find y€A such that
e(x—2A1).0(y) = (). p(x —A1,) =15 for each 1 ¢ Jq,(A)((p(x)). Hence, (x—A1y)y =
y(x —A1,) = 1, by hypothesis and so 1 & g4 (x). Therefore aq,(A)(go(x)) = 0y(x) for each x € A.
a4 (x) = op(@(x)) for each x € 4 follows from a5 (y) = 0,)(y) foreachy € p(4) .

(vi) = vii)) It follows from Theorem 2.6.

(vii) = 1)) 03(9(x)) = g4(x) for each x € A whenever A1 = ¢~1(B~1) by Theorem 2.6 and so
g ((p(x)) = 14(x) for each x € A.

Theorem 3.3. Let A and B be unital commutative C*- algebras, ¢ : A = B be a * - homomorphism
with ¢(14) = 15. Then rB(q)(x)) = 1,(x) for each x € Aif and only if p*A(B) = A(4).

Proof. Let 1 (qo(x)) = 14(x) for each x € A. Then for each g € A(A), there exists I € M(A) such
that Kerg = I. If we denote by J; the smallest ideal of B containing ¢ (1), then Jo = B or Jy # B.

If Jo = B, then we can write
k

Zvi'(p(ui) =1

i=1
for vy, vy, ..., v, € B and uy,uy, ..., u, € 1. Since u; € Kerg foreach i = 1,2, ..., k, u; € A~1. Then each v,
is topological divisor of zero by Theorem 2.10. In this case, there exists a sequence (y,®) in A such
that ||, @|| = 1 for each n € N, and ||y, w;|| - 0 as n - «, for each i = 1,2, ..., k. If we assume that
Vo = ¥, Py, @ .y, ® foreach i = 1,2, ..., k, it is easily seen that
Iymutill = [y Py @ oy P9 G 3 O (3, Q)| < [l Q|
and obtained that ||y,u;|| = 0 as n — «.
Also there exists M > 0 such that ||¢(x)|| < M.||x|| for each x € A since ¢ is continuous.
In the other hand, there is a ny € N such that given any € > 0, ||y, wl| <% for all n>n, since
lly,u;ll > 0 as n— oo for each i =1,2,..,k. Thus it is seen that ||¢(y,u;)|| » 0 as n — oo using
e u)ll < M. |ly,u;l| < e foreachi =1,2,...,k and same n, € N.

Moreover, if we remember
k

Z vi.p(u) =1,

i=1
then it is clear that ¢(y,) = X2, vi- @ (uu;) and so llp)ll < i llvill- e (nu)ll. Then llp ()l - 0
for same ny€N. Therefore, given any e>0, |lp(OI<e and so rz(p(y))<e for
Y = Yo Mg @ e ¥y ©.
(yno(i))A # 0 and (yno(i))A(g) = g(yn, @) # 0 for g € A(A4) since y,, P +# 0 for each i = 1,2, ..., k. Hence
if we say |g(y)| = s, then

19O = 19D I Do @) |9 (3 ©)| = s > 0.

At the same time, since 7,(y) = supea)lh(y)| and g € A(4), 74 (y) =s. In that case,
s<n) =1(e()) < & and so s < e by hypothesis. Then it is not satisfied that 73(¢(y)) < s and
this is a contradiction. This contradiction shows that j, # B.

In this case, there exists ] € M(B) such that J, € J and also f € A(B) such that  Kerf =].

Since I € M(A4) and A/I =C,wefind AeCandt el suchthata =211+t for each a € A. Therefore,
(@ f)@) =21+ f(e)). Again for t €1, ¢(t) € Kerf and hence (¢*f)(a) = 2. Using the fact that
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tel=Kerg, gla) =(¢*f)(a). Then it is easily seen that g = ¢*f € ¢*A(B) and obtained that
A(A) = ¢*A(B) by Theorem 2.8.

Converse conclusion follows from Theorem 2.9 and Theorem 3.2.

4. DISCUSSION AND CONCLUSION

Corollary 4.1. Let A and B be unital commutative C*- algebras, ¢ :A—> B be a* -

homomorphism with ¢(1,) = 15. Then the following statements are equivalent.

i rB(fp(x)) = 1,(x) for each x € A.

ii. g ((p(x)) = ry(x) foreach x € A,.

iii. [|o(x)|| = 1 whenever ||x|| = 1 for each x € A.

iv. ¢ is one - to - one.

v.x = 1, whenever ¢(x) = 15 for each x € A.

vi. o5(@(x)) = 04(x) for each x € A.

vii. A7l = 7 Y(B™D).

viil. p*A(B) = A(A), namely ¢* maps the space of complex homomorphisms of B (maximal ideal
space of B) to the space of complex homomorphisms of A (maximal ideal space of A).
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