
23 

Vol.6.Issue.2.2018 (April-June) 

©KY PUBLICATIONS  

 

 

  

 
    

 
 
 

SOME NOTES ON LINEAR DIOPHANTINE EQUATIONS AND THE EUCLIDEAN 
ALGORITHM 

 
LIJIANG ZENG 

Research Centre of Zunyi Normal College, Zunyi 563000, GuiZhou, China 
E-mail: ZLJ4383@sina.com 

 
ABSTRACT 

Linear Diophantine equation both in mathematics and other natural 

sciences, has extremely important position, Euclidean algorithm is a 

powerful mathematical tool in number theory and mathematical, based on 

the greatest common divisor of the bridge link the linear Diophantine 

equation and Euclidean algorithm, we obtained the new math concepts -- 

vector Euclidean algorithm, the vector Euclidean algorithm is quick and easy 

role to solve concrete problems. 
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1. Introduction 

Linear Diophantine equation[1-7] and Euclidean algorithm[8-11] in number theory, linear 

programming[12-14], integer programming[15-16], and other applied subjects plays an extremely 

important role, and their close relationship exists between the links, relationship between them is 

the greatest common divisor[17] of two integers, the greatest common divisor is not only in solving 

linear Diophantine equation, not only discriminating solvability  and other links play an important 

role, but also in Euclidean algorithm also plays a very important role, in this paper by using the 

greatest common divisor this tool, in-depth study of linear Diophantine equation and Euclidean 

algorithm, obtained the significant vector Euclidean algorithm concept and its natures. 

2. Some facts on linear Diophantine equations 

The simplest nontrivial Diophantine equations are linear equations in two variables. 

𝑎𝑥 + 𝑏𝑣 =  𝑐,   where  𝑎, 𝑏, 𝑐 Z  

Such an equation may have infinitely many solutions or none. For example. 

The equation 

6𝑥 + 15𝑦 = 0 
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has the infinitely many solutions x=15t. y=-6t as t runs through the integers. On the other hand, the 

equation 

6𝑥 + 15𝑦 = 0 

has no integer solutions. This is so because 3 divides 6x + 15y when x and y are integers (since 3 

divides both 6 and 15) but 3 does not divide l. This example shows that common divisors are 

involved in linear Diophantine equations, and exposes the key to their solution: the linear 

representation of the gcd(i.e., the greatest common divisor). 

3.Criterion for solvability of linear Diophantine equations. 

Proposition 1. When 𝑎, 𝑏, 𝑐 are integers, the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 has an integer solution if and 

only if gcd (𝑎, 𝑏) divides 𝑐. 

Proof. Since 𝑔𝑐𝑑(𝑎, 𝑏) divides a and b, it divides ax+by for any integers x and y. Therefore, if 

ax+by=c, then gcd(a, b) divides c. 

Conversely, we know there exist some integers m and n such that gcd(a, b)=am+bn. Hence if 

g gcd(a, b) divides c we have 

𝑐 = 𝑔𝑐𝑑(𝑎, 𝑏)𝑑 =  (𝑎𝑚 +  𝑏𝑛)𝑑 =  𝑎𝑚𝑑 + 𝑏𝑛𝑑 for some |d Z . 

 But then 𝑥 = 𝑚𝑑，𝑦 = 𝑛𝑑 is a solution of 𝑎𝑥 + 𝑏𝑦 =  𝑐.     

 This proof also shows how to find a solution 𝑎𝑥 + 𝑏𝑦 =  𝑐 if one exists.  Namely, express 

𝑔𝑐𝑑(𝑎, 𝑏) in the form 𝑎𝑚 + 𝑏𝑛, using the symbolic Euclidean algorithm to find 𝑚 and 𝑛, then 

multiply 𝑚 and 𝑛 by the integer 𝑑 such that 𝑐 = 𝑔𝑐𝑑(𝑎, 𝑏)𝑑. 

    If there is one solution 
0x x  and 

0y y , then there are infinitely many, because we can add to 

the pair 
0 0,x y（ ） any of the infinitely many solutions of ax+by=0． 

4. General solution of 𝒂𝒙 + 𝒃𝒚 = 𝒄.   

Proposition 2. The solution of 𝑎𝑥 + 𝑏𝑦 = 𝑐 in 𝑍 is 0
gcd( , )

b
x x t

a b
  , 0

gcd( , )

a
y y t

a b
 

 

where
0x x , 

0y y  is any particular solution and t runs through Z. 

Proof.  Since 
gcd( , )

b
x t

a b
 , 

gcd( , )

a
y t

a b
   is clearly an integer solution of ax+by =0,  adding it 

to any solution 
0x x , 

0y y  of 𝑎𝑥 + 𝑏𝑦 = 𝑐 gives another solution of 𝑎𝑥 + 𝑏𝑦 = 𝑐. 

   Conversely, if x, y is any solution of ax+by=c, then 
0'x x x  , 

0'y y y     satisfies ' ' 0ax by  .  

But any integer solution of a ' ' 0ax by   is a solution of the equation 

' ' ' 'a x b y   

whose coefficients are the relatively prime integers '
gcd( , )

a
a

a b
 , '

gcd( , )

b
b

a b
   

Since 'a  and 'b  have no common prime divisor, it follows from the unique prime factorization of 

both sides of the equation ' ' ' 'a x b y   that  

'b  divides 'x . That is ' 'x b t  for some integer t, and hence ' 'y a t  , Substituting the values of 

'x , 'y , 'a , 'b  back in the equations above yields 

0
gcd( , )

b
x x t

a b
  , 0

gcd( , )

a
y y t

a b
   

as claimed. 
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5. The vector Euclidean algorithm 

We used an extension of the Euclidean algorithm to compute the gcd of integers a and b in 

the form 

gcd( , )a b =ma+nb  for some ,m n Z  

The extension runs the ordinary algorithm ("subtracting the smaller number from the 

larger") and uses it to guide a symbolic imitation  that performs e same operations on linear 

combinations of the letters a and b. 

     We now wish to analyze the symbolic part of the algorithm more closely in the case where a 

and b are relatively prime. To do so we replace each linear combination 
i ima n b  by the ordered 

pair ( , )i im n enable the ordinary algorithm  to run as simply as possible we take a>0 and b<0 and 

keep the positive number in the first place and the negative in the second. 

     Then each step of the ordinary Euclidean algorithm is actually an addition: the number with 

the larger absolute value being replaced by its sum with the other number. The corresponding steps 

in the symbolic a1gorithm are vector additions so we ca11 the resulting process the vector  

Euclidean algorithm. 

Example 1.  

Table  2.1 shows the steps of the vector Euclidean algorithm on (12, -5), with number pairs in the 

first column, symbolic pairs in the second column, and vector pairs in the third. The actual additions 

are shown only in the symbolic column. 

 Table 2.1: Outputs of Euclidean algorithm 

Number Symbolic pairs Vector pairs 

(12,−5) (𝑎, 𝑏) ((1, 0), (0, 1)) 

(7,−5) (𝑎 + 𝑏, 𝑏) ((1, 1), (0, 1)) 

(2,−5) ((𝑎 + 𝑏) + 𝑏, 𝑏)  =  (𝑎 + 2𝑏, 𝑏) ((1, 2), (0, 1)) 

(2,−3) (𝑎 + 2𝑏, 𝑏 + ( 𝑎 + 2𝑏) ) =  (𝑎 + 2𝑏, 𝑎 + 3𝑏) ((1, 2), (1, 3)) 

(2,−1) (𝑎 + 2𝑏, 𝑎 + 3𝑏 + ( 𝑎 + 2𝑏) =  (𝑎 + 2𝑏, 2𝑎 + 5𝑏) ((1, 2), (2, 5)) 

(1,−1) (𝑎 + 2𝑏 + (2𝑎 + 5𝑏), 2𝑎 + 5𝑏) =  (3𝑎 + 7𝑏, 2𝑎 + 5𝑏) ((3, 7), (2, 5)) 

From the bottom line of Euclidean algorithm that 

1 = 3𝑎 + 7𝑏 = 3 12 7 5    

so ( , ) (3, 7)m n  , (3, 7) is a natural number vector such that 12𝑚 − 5𝑛 = 1.   

    It is also interesting to run the algorithm one step further (adding the number 1 to the number -1 

in the first column to get 0)because 12 and 5then reappear in the vector column. 

Table 2.2:Result of the extra step 

(1, 0) (3𝑎 + 7𝑏, 2𝑎 + 5𝑏) + ( 3𝑎 + 7𝑏) =  (3𝑎 + 7𝑏, 5𝑎 + 12𝑏) ((3, 7), (5, 12)) 

This is not surprising because 0 = 512-125 though conceivably we could  have obtained  a larger 

multiple of the vector (5, 12).  What is interesting is how easily we arrive at the vector  (5, 12): 

namely we started with the vector i=  (1, 0) and j=(0, 1) and took a series of steps in which a νector 

pair 
1 2( , )v v  was replaced by either 

1 2 2( , )v v v  or 
1 1 2( , )v v v  

We now generalize this example to show:  

6. Relative primality in the vector Euclidean algorithm.   

Proposition 3. In running the vector Euclidean algorithm:  

1. Every vector produced from (1, 0) and (0, 1) is a relatively prime pair of natural numbers. 

(We call such a vector primitive.) 
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2. Every relatively prime pair (a, b) of natural numbers can be produced (by starting the 

ordinary Euclidean algorithm on b and -a). 

Proof. 1. It is clear that any vector produce is a pair of natural numbers, because the first 

new pair is (1, 1) and further vector additions cannot decrease the members of the pair. To 

see why each pair produced is relatively prime we prove a stronger property: if 

1 1 2 2(( , ), ( , ))m n m n  is the vector pair at any step, then 

1 2 1 2 1m n n m   

This is true at the first, when 
1 1( , ) (1, 0)m n   and 

2 2( , ) (0,1)m n  . And if it is true for the 

vector pair 
1 1 2 2(( , ), ( , ))m n m n  then it is also true for the next pair 

1 2 1 2 2 2(( , ), ( , ))m m n n m n   or 
1 2 1 2 1 2(( ), ( , ))m m m m n n   . 

 This is so because 

1 2( )m m 2n 1 2 2 2 1 1 2( ) 1n n m m n n m      

and 

1m 1 2( )n n 1 1 2 1 2 1 2( ) 1n m m m n n m      

It follows that each vector 
1 1( , )m n  produced is a relatively prime pair because any common 

divisor of 
1m  and 

1n  also divides 
1 2 1 2 1m n n m  . Similarly for each vector 

2 2( , )m n . 

3. If a and b are relatively prime natural numbers then the vector Euclidean  algorithm guided 

by the ordinary Euclidean algorithm on b and –a produces a vector  ( , )m n  such  that mb-

na=0 and m and n are relatively prime by part 1. 

Since prime factorization is unique, mb=na for relatively prime a, b and relatively  prime m, n 

implies m=a and n=b.  Hence any relatively prime pair ( , )a b  can be produced by the vector  

Euclidean algorithm 

7. Conclusions 

     From the above, we have seen that Euclidean algorithm is a powerful mathematical tool in 

number theory and mathematical, based on the greatest common divisor of the bridge link the 

linear Diophantine equation and Euclidean algorithm, we obtained the new math concepts - vector 

Euclidean algorithm, the vector Euclidean algorithm is quick and easy role to solve concrete 

mathematical problems. 
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