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ABSTRACT
So far, a bulk number of research works have been done on various types of

il-SSI;I:é.St;S;-OSVSO :
xf fixed point theorems for contraction type mappings in usual metric space.
The notion of partial metric space was introduced by S.G. Matthews in 1992
as a generalization of the usual metric space in which the distance of a point
g o from itself may not be zero. The study of fixed point theory in orbitally
B R R complete partial meric space was initiated in 2011. The aim of this paper is

to generalize some of the works by Karapinar studied in [1] and [2] and by
Altun, et al studied in [4]. Beside these, we also show the equivalence of the
balls for partial metric space defined by Matthews [7] and the other
authors.

Keywords: Contraction principle, Partial metric space, Orbitally complete
space, Orbitally continuous map, Fixed point.

1. Introduction and Historical Motivation

In 1922, Stefan Banach proved a fixed point theorem for contraction mapping in metric space.
Since then a number of fixed point theorems have been introduced and investigated by several
workers, and many more generalizations of this theorem have been established. The study of fixed
point of mappings satisfying certain contractive conditions have been at the center of vigorous
research activity. Many different improvements and generalizations of Banach’s contraction
theorem in different metric spaces are made.

The failure of a metric function in computer studies was the primary motivation behind the
introductory of the partial metric. In 1994, Matthews [7] introduced the concept of partial metric
space as a part of the study of denotational semantics of data flow network and proved the Banach
contraction principle in such spaces. Many researchers studied and generalized the fixed point for
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mappings satisfying contractive conditions in complete partial metric spaces, for instances, we refer
a few: Altun, et al[4], Abdeljawad & karapinar[9], Kadelburg, et al[11] and many others.

In 2011, the study of fixed points in orbitally complete partial metric spaces was initiated (see
[1]). E. Karapinar[2], H.K. Nashine and E. Karapinar [3] obtained some new results on orbitally
complete partial metric spaces. Recently in 2017, Popa, et al proved an unified theorem for mapping
with implicit relation in orbitally complete partial metric spaces, (see [10]).

2. Preliminaries

Before proceeding with the work, we recall some of the basic notations and definitions that
are used in this paper.

The concept and basic properties of partial metric (p-metric) function was introduced by
Matthews [6] in 1992 as follows:

Definition 2.1. Let M be a non-empty set. A function p: M xM — R_ is said to be a partial metric
on M if forany X, Y,Z € M, the following conditions hold:

(P1): P(X,X) = p(y,y) = p(X,y) ifand only ifx =y,
(P2): P(X,X) < p(x,y),

(Ps): p(X,y)=p(y,X),

(Pa): P(X,2) < p(X, y)+ p(Y,2)— p(Y,Y)-

The pair (M, p) is called a partial metric space. If p(X,y) =0, then (P1) and (P,) implies

X =Y, but the converse does not always hold.
Each partial metric p on M generates a T topology 7 , which has a base the family of
open p—balls{B (x,&):xeM and & >0} where
B,(X,&) ={y e M : p(X,y) < p(X,X) + g}forall xe M and & >0.
If pisa partial metricon M , then the function
d, (% y)=2p(x,y)— (X, X) - p(y, )

defines a metricon M . Further, a sequence (x,) converges in (M ,d p)to apoint Xe M if

lim p(x,,%,) =lim p(x,,x) = p(x,x).

n,m—oo

Example 2.1 (see [3], [7]). Consider M =[0,0) with p(X, ¥) = max{X, ¥y}, X,y € M. Then (M, p)

is a partial metric space. The corresponding metric is
dp (%, y) =2p(x, y) = p(x,X) = p(y, y) = 2max{x, y} - x -y =[x y].
Example 2.2 (see [3], [7]). Let M ={[a,b]:a,b € R,a <b}and define
p([a,b],[c,d]) = max{b,d}—min{a,c}.

Then, (M, p)is a partial metric space.
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There are some generalizations of partial metrics. O’Neill [8] generalized it a bit further by
admitting negative distances. The partial metric of O’Neill sense is called dualistic partial metric.
Also, Heckmann [5] generalized it by omitting small self — distance axiom p(X,X) < p(X,Y). The

partial metric of Heckmann sense is called weak partial metric. The inequality
2p(x,y) 2 p(x,x)+ p(y,y)

is satisfied for all X, yin a weak partial metric space.

Lemma 2.1 (see [7]). Let (M, p) be a partial metric space and (X,) be a sequence in M convergent
toZ, where p(z,z) =0. Then, !IIEL p(x,,y)=p(z,y)foreveryyeM.
It is noted that the limit of a sequence in a partial metric space need not be unique.
Example 2.3. If M =[0,00) and define p(X,Yy)=max{x,y} VX,yeM,then for (X,)={1},
ﬁ'ﬂl p(X,,X) =X for X >1. Hence the limit of p(X,,X) depends upon the value of X but not on the
sequence (xn).
Definition 2.2 (see [7]). Let (M, p) be a partial metric space.

a) A sequence (x,) in M is a Cauchy sequence if and only if nlrianw pP(X,, X, ) exists and

finite.
b) A partial metric space is said to be complete if every Cauchy sequence converges with

respect to 7 ;to a point X € M such that p(x,x) = lim p(x,,X;).
n,m—oo

c) A mapping T:M — M is said to be continuous at X, € M if for every& >0, there
exists & >0such that T (B, (X,,0)) = B, (T (%)), €) -

Lemma 2.2 (see [7]).

a) A sequence (x,) is Cauchy in a partial metric space (M, p)if and only if (x,) is Cauchy

in the metric space (M ,d ).
b) A partial metric space (M, p)is complete if and only if the metric space (M,d )is
complete. Moreover, lim d (x,X,) =0 < p(x,x) =lim p(x,x,) = lim p(x,,X,),
n—oo n—o0 n,m—oo
where X is a limit of (x,) in(M,d ).

Definition 2.3(see [2]). Let (M, p)be a partial metric space. A mapping T:M — M is called

orbitally continuous if
lim p(T"x,T"x) =lim p(T"x,2) = p(z,2)
i, j—o0 i—0

implies

lim p(TT"x, TT"x) =lim p(TT"X,Tz) = p(Tz,Tz) foreachXx € M .
i,j—0 i—o0
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Definition 2.4 (see [2]). A partial metric space is called orbitally complete if every Cauchy sequence
(T "x) converges in (M, p), that is

lim p(T"x,T"x)=lim p(T"x,2)=p(z.2).

1, J—>» i—0
Lemma 2.3 (see [4]). Let (M, p) be a partial metric space, A< M and X, € M. Define
p(X,, A) =inf{p(x,,X): x € A}. Thenae A< p(a, A) = p(a,a).

Theorem 2.1 (see [1]). Let T be an orbitally continuous self- map of an orbitally complete partial
metric space (M, p). Suppose that T satisfies the inequality

min{ p(Tx, Ty), p(x, TX), p(Y, Ty)}< ap(x, y)

for some 0<a <landallX,y € M, then the sequence (T ”X) converges to a fixed point of T in
M .

Theorem 2.2 ( see [1]). Let T be an orbitally continuous self- map of an orbitally complete partial
metric space (M, p). Suppose that T satisfies the inequality

min{ p(Tx,Ty).p(x, y), p(X, TX).p(y,Ty)}
min{ p(x,Tx), p(y,Ty)}

for some 0<a <landall X,y € M such that p(x,Tx) =0and p(y,Ty)#0, then the sequence

<ap(x,y)

(T nX) converges to a fixed pointof T .

Theorem 2.3 ( see [3]). Let T be an orbitally continuous self- map of an orbitally complete partial

metric space (M, p). Suppose that T satisfies the inequality

PO TX)P(Y, Ty)

1+ p(x.y)
forall X,yeM,x#Y, where a,f>0and o+ ff <1.Then T has a fixed point Zin M . Moreover,
p(z,Tz) = p(Tz,Tz) = p(z,2) =0

Theorem 2.4 (see [2]). Let T be an orbitally continuous self- map of an orbitally complete partial

P(Tx, Ty) <ap(x,y) + B

metric space (M, p). Suppose that T satisfies the inequality
min{ p(x, Tx), p(y, Ty), p(Tx, Ty)} < p(X, y)

forall X,y € M,Xx# Y. If the sequence (T "X) has a cluster point Z € M for someXe M , then Z is
a fixed point of T.

Theorem 2.5 (see [2]). Let T be an orbitally continuous self- map of an orbitally complete partial
metric space (M, p). Suppose that T satisfies the inequality

min{ p*(x,Tx), p>(Y,Ty), (X, y).p(TX, Ty)} < ap(x, TX).p(y,Ty)

forall X,y € M and for some O < a <1. Then for each X € M , the sequence (T "x) converges to a
fixed point of T.
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Definition 2.5 (see [10]). Let ¥, be the sets of all continuous functions F(t,t,,t,,...t): Rf —>R

satisfying the following conditions:
(F1): F is not increasing in variablet,,
(F2): There exists h € (0,1) such that for all u>0,v >0, F(u,v,v,u,u+V) <0 implies u<hv.

Theorem 2.6 ( see [10]). Let T be an orbitally continuous self- map of an orbitally complete partial
metric space (M, p) . Suppose that

F(p(Tx,Ty), p(X, ¥), p(X, TX), p(y, Ty), p(X, Ty) + p(y,Tx)) <0
forall X,yeM,x#yand F € F,, - Then T has a fixed point Z such that

p(z,2) = p(Tz,Tz) = p(z,Tz) =0.

Theorem 2.7 ( see [4]). Let T be a self-map of a complete partial metric space (M, p). Suppose that

T satisfies the inequality

1
p(TX’Ty) < ¢(maX{p(X, y): p(xiTX)a p(y’Ty)iz[ p(XfTY) + p(y’TX)]})
forall X,y € M, where ¢:[0,00) —[0,)is continuous, non-decreasing function such that
@(t) <tforeach t >0.Then T has a unique fixed point.

Corollary 2.1 (see [4]). Let T be a self-map of a complete partial metric space (M ,p). Suppose that
T satisfies the inequality

1
p(Tx, Ty) < Amax{p(x, y), p(x, Tx), p(y,TY),E[IO(X,TY) +p(y, ™)1}
forall X,y € M, where 0< A <1.Then T has a unique fixed point.

Theorem 2.8 (see [4]). Let T be a self-map of a complete partial metric space (M, p). Suppose that
T satisfies the inequality

P(TX,Ty) <ap(x, y) +bp(x,Tx) +cp(y, Ty) + dp(x,Ty) +ep(y,TX)

forall X,y € M, where a,b,c,d,e >0and, if d >e, then a+b+c+d+e<1,if d <e, then
a+b+c+d+2e<1.Then T has a unique fixed point.

Corollary 2.2 (Banach type, see [4]). Let T be a self-map of a complete partial metric space (M, p).
Suppose that T satisfies the inequality

p(Tx, Ty) <ap(x,y)
forall X,y € M, where 0<a<1.Then T has a unique fixed point.

Corollary 2.3 (Kannan type, see [4]). Let T be a self-map of a complete partial metric space (M, p).
Suppose that T satisfies the inequality

P(Tx, Ty) <bp(x,Tx) +cp(y,Ty)

forall X,y € M, where b,c>0and b+C<1.Then T has a unique fixed point.
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Corollary 2.4 (Riech type, see [4]). Let T be a self-map of a complete partial metric space (M, p).
Suppose that T satisfies the inequality

p(Tx, Ty) <ap(x, y) +bp(x,Tx) +cp(y,Ty)
forall X,y € M, where a,b,c>0and a+b+cC<1.Then T has a unique fixed point.
3. Main Results

In this section we shall investigate the results that generalize the Theorem 2.1 studied by Karapinar

[2].

Theorem 3.9. Let T be an orbitally continuous self- map of an orbitally complete partial metric space
(M, p). Suppose that T satisfies the inequality

min{ p(Tx,Ty), p(x, Tx), p(y,TY),%[ P(TY) + p(Y, TX)1}< Ap(x, Y) . (3.2)

forall X,y € M forsome A €(0,1), then the sequence (T"x) converges to a fixed point of T for
each XxeM .

Proof.

Take an arbitrary point X, € M . Let us construct a sequence
X =1X,, N=0,1 2,....

If there exists a positive integer N such that X, = X,,;, then X, is a fixed point of T. Hence we are

done.

So, suppose that X, # X, ,,foreach n=0,1, 2,,.... SubstitutingX = X, and y =X, in (3.1), we

n+1

obtain the inequality

. 1
mln{ p(TXn 'TXn+1)7 p(xn ’Txn)’ p(xn+1’TXn+1)'E[ p(xn ’TXn+l) + p(xn+l’TXn )]}S ﬂ'p(xn ' Xn+l)
. 1
= mln{ p(Xn+l1 Xn+2)’ p(Xn ’ Xn+1)’ p(xn+l’ Xn+2)’§[ p(xn ’ Xn+2) + p(Xn+l1 Xn+1)]}S /Ip(xn ' Xn+1)

= min{ p(X;, X1 ) P(Koa sz),%[ P(Xq: Xn.2) + P(Xngs Xt )IFS AP(X,, Xi01) - (3:2)
But in view of (P4),we have
P X0.2) < P(os Xia) + P Xni2) = P(Kog X1
= P X2) + P(Xa Xa) < PG Xa) + P(Kaas Xni2)
Therefore, we obtain from (3.2) that

i 1
mln{ p(xn ! Xn+1)’ p(xn+1’ Xn+2)1§[ p(xn ! Xn+1) + p(Xn+l1 Xn+2 )]}S //lp(xn ' Xn+1)

= mln{ p(xn ' Xn+l)’ p(xn+1’ Xn+2)}S ﬂ’p(xn ' Xn+l) (33)
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Now, if min{ p(X,,X,..), P(X,.1, X,.,)}= P(X,,X,.,,) for some n, then from (3.3) we have,

p(xn 1 Xn+1) S ip(xn 1 Xn+1)
which is contradiction as 4 € (0,1). Thus
mln{ p(Xn ' Xn+1)1 p(xn+17 Xn+2)}: p(Xn+1’ Xn+2) V n.
Then we have,

P(Xpy1 Xni2) < AP(X,, X,,,) forevery n=0,1,2,.... Thus, we get

p( n+l1? n+2) < ﬂ‘p(xn' n+1) < /12 p(X n-1’ n) <...=5 j'm-l p(XO’Xl) (34)

Now, we claim that (x,) is a Cauchy sequence. Without loss of generality assume that n > m,then in
view of (3.4) and (P4) we have

p(xn ' m) < p(xn X —1) + p(X n-1? n 2) +...+ p(xm+l’ Xm) _[ p(xn—l’ Xn—l) + p(xn—Z ' Xn—z) +
.t p(Xm+1’ Xm+l)]

< p(xn ' Xn—l) + p(xn—l’ anz) +...+ p(xm+1' Xm)
<A+ ATP(Kr %)

l_ln—m
1-2

—m

P(Xo, %)

m

-1

< P(Xy, %) > 0 as m— oo

This shows that nlrinnlm pP(X,,X,,) =0.That s, (x,) is a Cauchy sequence in(M, p). Since (M, p)is
orbitally complete partial metric space, then (T "XO) converges to a limit Z € X such that

dim p(T "%, T "xo) = lim p(T"%,,2) = p(z,2) =0.
Now, we will show that Z is a fixed pointof T .

Since T is orbitally continuous, therefore
lim P(T"X,,2) = p(z2,2) = lim p(T "*x,,T2) = p(Tz,T2).
On the other hand, from (P4),we have
P(z,TZ) < p(z,T " X,) + P(T "X, T2) — PT X0, T "X,)
< p(z,T"™x,) + p(T"*x,,T2)

= p(2,X,,,) + P(T " X,,T2)
Using Lemma 2.1 and letting N — o0 , we obtain

p(z,Tz) < p(Tz,Tz).
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But by (P2), this is possible only if
p(z,Tz) = p(Tz,T2).

From (3.1), we have

min{ p(Tz,Tz), p(z,T2), p(z,Tz),%[p(z,Tz) +p(z,T2)]}< Ap(z,2)

= p(Tz,Tz) = p(z,Tz) < Ap(z,z) =0.
This implies that p(Tz,Tz) = p(z,Tz) = p(z,z) =0, then from (P1) we obtainz =Tz .
Hence, Z is a fixed point of T , which completes the proof.
Now, we shall investigate the result that generalize Theorem 2 studied by Altun, et al [4].

Theorem 3.10. Let (M, p) be an orbitally complete partial metric space and T : M — M be an

orbitally continuous map such that

p(Tx,Ty) =a[p(x, Ty) + p(y, Tx)]+bp(x, y)
forall X,y € M, where a,b>0and 2a+b<1.Then T has a unique fixed point.
Proof:

Take an arbitrary point X, € M . Let us construct a sequence (Xn) in M such that

X, =TXy, X, =TX =T?X,,... and in general X, =T "x,for n=0,1,2,...

Now, Substituting X = X, ; and Yy = X, in (3.5), we obtain the inequality

Xy Xn1) = PT "%, T"X,)
= p(T (T %), T(T"%,))
=a[p(T "Xy, T™X,) + P(T "X, T "X, )1+ bp(T "X, T"X,)
=a[P(Xy 1, Xpia) + P(Xs X, )]+ DP(X, 4, X,)
But from (Pa) we get
P(Xoo1s Xpaa) < P(Xog X)) + P(Xy s X1) — P(X, X))
which implies
P(Xo_1s Xpu) + P(Xq s X)) < P(X_1, X, ) + P(Xo s Xi1)
Thus, we get from (3.6) and (3.7) that
P(Xy, X)) S ALP(X 1, Xo) + P(Xy s X0 )]+OP(X 4, X, )

SP(Xy s X)) SAP(X, 4, X,), YN, where /I:i—er<l
—-a

Thus, we see that,

p(xn ! Xn+1) < ﬂ'p(xn—l’ Xn) < 2“2 p(anz ! Xn—l) <...< ﬂ“n p(XO ' Xl)

.(3.5)

..(3.6)

.. (3.7)

.. (3.8)
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Now, we claim that (x,) is a Cauchy sequence. Without loss of generality assume thatn > m. Then,
using (3.8) and (P4) we have

p(xn ! Xm) < p(xn ' Xn—l) + p(xn—l’ Xn—2) +...+ p(xm+l’ Xm) _[ p(xn—l’ Xn—l) + p(xn—Z ! Xn—Z) +
.t p(xm+1’ Xm+l)]

< p(Xn ' Xn—l) + p(xn—17 Xn—2) +...0F p(Xm+l’ Xm)

<A+ ATP(X 0 %)

<
1-2

P(Xy, %) = 0 a8 m—o o

This shows that lim p(X,, X, ) =0. That is, (x,) is a Cauchy sequence in(M, p). Since (M, p)is
n,m—oo
orbitally complete partial metric space, then (T "XO) converges to a limit Z € X such that
lim p(T"x,,T"%,) =lim p(T"x,,2) = p(z,2)=0.
n,m—oo n—oo

Now, we will show that Z is a fixed point of T . For this, we prove p(z,Tz) =0. If possible, let us
suppose P(z,Tz) # 0. Then from (P,) and (3.5) we obtain

P(z,72) < p(2,T™%y) + P(T "%, Tz) — P(T "Xy, T X,)

< p(z, T™x,) + p(T "x,,Tz)

< p(z,x.,,)+a[p(T "%y, Tz) + p(z,T"*%,)]+bp(T "X,,2)
= P(Z, X,1) +ALP(X,, T2) + P(Z, X101+ P(X,, 2)
Letting N —> o0, we have
p(z,Tz) <ap(z,Tz)
=@1-a)p(z,Tz)<0
which is a contradiction. Thus, p(z,Tz) =0andso Tz =2 .Hence Z is a fixed point of T .
Uniqueness:
Let Y be another fixed point of T . Then Ty = yand p(y, y) =0.Then,
p(z,y) = p(Tz,Ty) =a[p(z,Ty) + p(y. T2)]+bp(z, y)
=a[p(z,y)+ p(y,2)]+bp(z,y)
=(2a+b)p(z,y)
~.(I-2a-b)p(z,y) <0. Thisimplies p(z,y)=0.
Thus, we see that,
p(z.2) = p(y,y)=p(z,y) =0

Then from (P1), we get Z =Y .This completes the proof.
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Now, we show the equivalence of the definition of open ball for a partial metric space given by

Matthews and the other authors by proving the Theorem 3.2[7].

Theorem 3.11 (see [7]). For each partial metric p, open ball Bf (@), andx e ng (@), there exists

0 >0suchthat xe B} (x) = B/ (a).

Proof:

Suppose X € B (a) , then by definition of ball, p(x,a) < p(X,X)+¢&
Letd = & — p(X,a) + p(x,X) ,then clearly 6 >0.

Also, p(X,X) < p(x,X)+0J andso x e B (X).

Again, suppose that y € B} (X) , so that p(y,x) < p(y,y)+0J

= p(Y, X) <p(y, y) +&—p(x,a) + p(X, X).

or, PY:X)+p(x.@)—=p(x,x) <p(y,y)+&

or, P(Y:8) < p(y,y)+¢.

~.yeB!(a)

Thus, B} (x) < B (@) , which completes the proof.
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