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ABSTRACT 

The present paper introduces heavy tailed generalization of exponential 

distribution called slash exponential distribution. Slash exponential 

distribution is the ratio of independent exponential and uniform power 

function distributions. We derived probability density function, reliability 

measures and studied various properties. The maximum likelihood 

estimation procedure is employed to estimate the parameters of the 

proposed distribution. An algorithm in R package was developed to carry 

out the estimation. Simulation studies for various choices of parameter 

values were performed to validate the algorithm. Finally the application of 

slash exponential distribution to real datasets were illustrated. 

Keywords - Exponential distribution, slash distribution, Slash exponential 

distribution. 

 

1 INTRODUCTION 

Kafadar (1982, 1988) proposed the univariate slash distribution which is defined as the 

resulting distribution of the ratio of a standard normal random variable to an independent uniform 

random variable. Slash distribution have heavier tails than the normal distribution. Wang and 

Genton (2006) generalized the univariate slash normal distribution to multivariate slash and skew-

slash distributions.  

The standard slash normal distribution is obtained as the distribution of the ratio 𝑋 =
𝑌

𝑈1/𝑞, 

where Y is a standard normal random variable, U is an independent uniform random variable over 

the interval (0,1) and q > 0. For q = 1, it has the probability density function (pdf),  
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𝑓(𝑥) = {

𝜙(0) − 𝜙(𝑥)

𝑥2
,   𝑥 ≠ 0,

𝜙(0)

2
, 𝑥 = 0,

 

where 𝜙(. ) denotes the probability density function (pdf) of the standard normal distribution. As 

𝑞 → ∞ the slash normal reduce to the normal distribution. 

Recently there is lot of interest in developing new slash distributions using well known 

families of distributions. For example alternative skew-slash distribution in multivariate setting 

(Olcay Arslan, 2008), skew slash distribution generated by normal kernel (Punathumparambath, 

2011), multivariate asymmetric slash Laplace (Punathumparambath, 2012a), skew slash logistic 

distribution (Punathumparambath and George, 2012b), skew slash distribution generated by Cauchy 

Kernel (Punathumparambath, 2013), multivariate skew-slash t and skew-slash Cauchy 

(Punathumparambath, 2012c), Modified slashed-Rayleigh distribution (Iriarte et al., 2018) and 

Generalized modified slash (Jimmy Reyes et al., 2020). 

Many authors studied several generalized forms of exponential distribution for modeling 

lifetime datasets. In the present work we study slash exponential distribution which is the heavy 

tailed generalization of exponential distribution. This article is organized as follows. In section 2 

standard slash exponential distribution is derived and various properties were explored. In section 3 

we derived the two parameter slash exponential distribution, its reliability measures and maximum 

likelihood estimators for the parameters. Section 4 is devoted to simulation studies. Applications of 

the proposed distributions to microarray gene expression studies were illustrated in section 5. 

Finally some concluding remarks are given in section 6. 

2 STANDARD SLASH EXPONENTIAL DISTRIBUTION 

In this section we introduce standard slash exponential distribution and studied its 

properties. The standard slash exponential (SE) distribution can be defined as the distribution of the 

ratio 𝑋 =
𝑌

𝑈1/𝑞, where Y is a standard exponential random variable and U is an independent uniform 

random variable over the interval (0,1) and q > 0. It is denoted by 𝑋 ~ 𝑆𝐸(1;  𝑞) or SE (q). Now we 

define the standard slash exponential variable X. 

Definition 2.1 A random variable X denoted by 𝑋 ~ 𝑆𝐸(1;  𝑞) is said to have a standard slash 

exponential (SE) distribution if its probability density function is given by 

𝑔(𝑥, 𝑞) = ∫ 𝑢
1

𝑞

1

0

𝑓 (𝑥𝑢
1

𝑞) 𝑑𝑢, 𝑥 ≥ 0, 𝑞 > 0.                                                         (2.1)  

Where f (.) is the pdf of the standard exponential distribution with pdf given, 𝑓(𝑥) = 𝑒−𝑥, 𝑥 ≥ 0. 

The cdf of the standard slash exponential variable X can be given by 

𝐺(𝑥, 𝑞) = ∫ 𝐹 (𝑥𝑢
1

𝑞)
1

0
𝑑𝑢, 𝑥 ≥ 0.                                                                               (2.2) 

Where F (.) is the cdf of the standard exponential distribution with pdf given by, 

𝐹(𝑥) = 1 − 𝑒−𝑥, 𝑥 ≥ 0. 

For the substitution 𝑣 =  𝑢
1

𝑞, the pdf and cdf of the standard slash exponential distribution are 

respectively given by, 
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𝑓(𝑥, 𝑞) = 𝑞 ∫ 𝑣𝑞
1

0

𝑒−𝑣𝑥𝑑𝑣, 𝑥 ≥ 0, 𝑞 > 0.                                                               (2.3)  

𝐹(𝑥, 𝑞) = 𝑞 ∫ 𝑣𝑞−1
1

0

(1 − 𝑒−𝑣𝑥)𝑑𝑣 = 1 − 𝑞 ∫ 𝑣𝑞−1
1

0

𝑒−𝑣𝑥𝑑𝑣, 𝑥 ≥ 0, 𝑞 > 0.                           (2.4) 

Plot of the pdf and cdf of standard slash exponential distribution for various values of the parameter 

q is given below in Figure 1. 

 

Figure 1. Plots of pdf (left panel) and cdf (right panel) of standard slash exponential for different 

values of q. 

For 𝑞 = 1, we get canonical standard slash exponential distribution and its pdf is given by, 

𝑓(𝑥, 1) = ∫ 𝑣
1

0

𝑒−𝑥𝑑𝑣 =  
1 − 𝑒−𝑥(1 + 𝑥)

𝑥2
, 𝑥 > 0, 𝑞 > 0.                                      (2.5) 

The pdf of the univariate canonical slash exponential distribution has the same tail heaviness as the 

tail of the half Cauchy distribution.  

Putting 𝑞 = 2  in equation (2.3) we get the pdf of the standard slash exponential as given below, 

𝑓(𝑥, 2) = {

4(1 − 𝑒−𝑥)

𝑥3
−

2𝑒−𝑥(2 − 𝑥)

𝑥2

2

3
,    𝑥 = 0.

 , 𝑥 ≠ 0, 𝑞 > 0.                                                (2.6) 

In a similar way closed-form expressions for the pdf can be computed for different values of q.  

Now we derive the closed form expression for the pdf in terms of incomplete gamma 

function. The lower incomplete gamma function and upper incomplete gamma function are 

respectively given by, 

𝛾(𝛼, 𝑥) = ∫ 𝑧𝛼−1𝑒−𝑧
𝑥

0

 𝑑𝑧, 𝑅𝑒(𝛼) > 0, 

Γ(𝛼, 𝑥) = ∫ 𝑧𝛼−1𝑒−𝑧
∞

𝑥

 𝑑𝑧, 𝑅𝑒(𝛼) > 0. 

For 𝛼 ≠ 0, −1, −2, … we have 𝛾(𝛼, 𝑥) = Γ(𝑥) −  Γ(𝛼, 𝑥) and Γ(𝛼 + 1, 𝑥) = 𝛼Γ(𝛼, 𝑥) + 𝑥𝛼𝑒−𝑥. 
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Definition 2.2 A random variable X denoted by 𝑋 ~ 𝑆𝐸(1;  𝑞) is said to have a standard slash 

exponential (SE) distribution if its probability density function is defined as 

𝑓(𝑥, 1; 𝑞) = 𝑞𝑥−(𝑞+1)𝛾(𝑞 + 1, 𝑥), 𝑥 > 0, 𝑞 > 0.                                                       (2.7) 

Remark 2.1 When q = 1 we obtain the canonical standard slash exponential. The pdfof the SE for q = 

1 is given by, 

𝑓(𝑥, 1; 1) = 𝑥−2𝛾(2, 𝑥), 𝑥 > 0.                                                                                    (2.8) 

2.1. Properties 

Figure 1 shows the density plots of standard SE distribution for various values of q. For 

standard SE distribution the tail heaviness is controlled by the parameter q and has heavier tail for q 

= 1. Plots survival and hazard function (sf) for various values of q is given in Figure 2. From Figure 2  

we can see that standard SE has heavier tails for small values q. The hazard rate of standard SE is 

decreasing for lower values of q and remains constant for higher values of q. Hence standard SE can 

be used to model survival data which has decreasing and constant hazard rates. 

Remark 2.2 Note that the SE random variable in (2.1) is a scale mixture of the exponential random 

variable as X| (U = u), 𝑈 ~𝑈(0, 1) has standard exponential distribution. 

Remark 2.3 The standard SE has heavier tails than the standard exponential distribution. 

2.2 Reliability Measures 

In this section we derive reliability measures of standard SE distribution. Here we derived 

expressions for survival function, hazard rate function, reverse hazard function, odds function and 

mean residual life function for the standard SE.  

The survival function (sf) of standard  𝑆𝐸  is given by 

𝑆(𝑡) = 1 − 𝐹(𝑡) = 𝑞 ∫ 𝑣𝑞−1
1

0

𝑒−𝑣𝑥𝑑𝑣, 𝑥 ≥ 0, 𝑞 > 0.                                                           (2.9) 

The hazard function (hf) of standard 𝑆𝐸  is, ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 and is given by 

      ℎ(𝑡) =
∫ 𝑣𝑞1

0
𝑒−𝑣𝑥𝑑𝑣

∫ 𝑣𝑞−11

0
𝑒−𝑣𝑥𝑑𝑣

, 𝑥 ≥ 0, 𝑞 > 0.                                                      (2.10) 

 

Figure 2. Plots of sf (left panel) and hf (right panel) of standard slash exponential for different values 

of q. 
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The reversed hazard function (rhf) of the standard SE distribution 𝑟(𝑡) =
𝑓(𝑡)

𝐹(𝑡)
  is given by, 

𝑟(𝑡) =
𝑞 ∫ 𝑣𝑞1

0
𝑒−𝑣𝑥𝑑𝑣

1 − 𝑞 ∫ 𝑣𝑞−11

0
𝑒−𝑣𝑥𝑑𝑣

, 𝑥 ≥ 0, 𝑞 > 0.                                                     (2.11) 

The odds function (Of) of the standard SE distribution, 𝑂(𝑡) =
𝐹(𝑡)

𝑆(𝑡)
 is given by 

𝑂(𝑡) =
1 − 𝑞 ∫ 𝑣𝑞−11

0
𝑒−𝑣𝑥𝑑𝑣

𝑞 ∫ 𝑣𝑞−11

0
𝑒−𝑣𝑥𝑑𝑣

𝑥 ≥ 0, 𝑞 > 0.                                                   (2.12) 

2.3 Moments  

If the random variable X has a standard slash exponential distribution then for 𝑟 > 0, the 

 𝑟𝑡ℎ raw moment is given by 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = 𝐸(𝑌𝑟)𝐸 (𝑈

−
𝑟

𝑞) =
𝑞

𝑞 − 𝑟
𝐸(𝑌𝑟) =

𝑞

𝑞 − 𝑟
𝑟!, 𝑞 > 𝑟.                              (2.13) 

For r=1 we get mean of the standard slash exponential distribution and is given by, 

𝐸(𝑋) = 𝐸(𝑌)𝐸 (𝑈
−

1

𝑞) =
𝑞

𝑞 − 1
𝐸(𝑌) =

𝑞

𝑞 − 1
, 𝑞 > 1, 

and Variance is given by  

𝑉(𝑋) = 𝜇2 =
2𝑞

𝑞 − 2
− (

𝑞

𝑞 − 1
)

2

, 𝑞 > 2. 

2.4 Skewness and Kurtosis 

For q > 4, the Coefficient of skewness and Kurtosis of standard SE are given by, 

√𝛽1 =
𝜇3

′−3𝜇2
′𝜇1

′+2𝜇1
′3

𝜇2
3/2 , 

𝛽2 =
𝜇4

′ − 4𝜇3
′𝜇1

′ + 6𝜇2
′𝜇1

′2
− 3𝜇1

′4

𝜇2
2

, 

Where 𝜇2
′ =

2𝑞

𝑞−2
, 𝑞 > 2, 𝜇3

′ =
6𝑞

𝑞−3
, 𝑞 > 3 and 𝜇4

′ =
24𝑞

𝑞−4
, 𝑞 > 4. 

2.5 Moments Generating Function 

If the random variable X has a standard slash exponential distribution then the moment 

generating function is given by, 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑥 𝑓(𝑥)𝑑𝑥 = ∫ 𝜙 (𝑡𝑢
− 

1

𝑞)
1

0

∞

0

 𝑑𝑢,  

where 𝜙(𝑡) is the characteristic function of standard exponential distribution and is given by, 

𝜙(𝑡) =
1

1 − 𝑖𝑡
, 𝑡 ∈ 𝑅. 

2.6 Moment estimate 

In this section we study the problem of estimating the unknown parameter, q of standard SE 

distribution. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be independent and identically distributed sample of size n from the 
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standard SE distribution. The moment estimate of 𝑞 can be obtained by solving the following normal 

equation, 

𝑞

𝑞 − 1
= 𝑥̅. 

Then the moment estimate of q is given by, 

𝑞̂ =
𝑥̅

𝑥̅ − 1
. 

3 SLASH EXPONENTIAL DISTRIBUTION 

In this section we introduce two parameter slash exponential distribution with parameters 

(𝜆, 𝑞). Now we define the density of the slash exponential distribution with scale parameter 𝜆 and 

tail parameter q, denoted by 𝑋 ~ 𝑆𝐸(𝜆;  𝑞). 

Definition 3.1. A random variable X denoted by 𝑋 ~ 𝑆𝐸(𝜆;  𝑞) is said to have a slash exponential (SE) 

distribution if its probability density function is 

𝑓(𝑥, 𝜃, 𝜆, 𝑞) = 𝜆𝑞 ∫ 𝑣𝑞
1

0

𝑒−𝜆𝑣𝑥𝑑𝑣, 𝑥 ≥ 0, 𝜆, 𝑞 > 0.                                                 (3.1) 

The cdf of the standard slash exponential variable X can be given by 

𝐹(𝑡) = 1 − 𝑞𝜆 ∫ 𝑣𝑞−1
1

0

𝑒−𝜆𝑣𝑥𝑑𝑣, 𝑥 ≥ 0, 𝜆, 𝑞 > 0.                                                (3.2) 

 

Figure 3. Plots of pdf (left panel) and cdf (right panel) of slash exponential for different values of 

𝜆 and q. 

Plots of pdf and cdf of slash exponential distribution for different values of 𝜆 and q is given in Figure 

3. From the left panel of Figure 3 we can see that slash exponential distribution has heavier tails 

compared to exponential distribution. From Figure 4 we can see that the hazard function of the SE 

model is decreasing for smaller values of the parameter q and remains constant for higher values of 

q. Now we define the pdf of SE using incomplete gamma function. 

Definition 3.2 A random variable X denoted by 𝑋 ~ 𝑆𝐸(𝜆;  𝑞)is said to have a standard slash 

exponential (SE) distribution if its probability density function is defined as 

𝑓(𝑥, 1; 𝑞) = 𝑞𝜆−𝑞𝑥−(𝑞+1)𝛾(𝑞 + 1, 𝑥𝜆), 𝑥 > 0, 𝜆, 𝑞 > 0.                                     (3.3) 

The survival function (sf) of 𝑆𝐸  is given by 



Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

   44 

Vol.8.Issue.4.2020 (Oct-Dec.) 

BINDU PUNATHUMPARAMBATH  
 

𝑆(𝑡) = 1 − 𝐹(𝑡) = 𝑞𝜆 ∫ 𝑣𝑞−1
1

0

𝑒−𝜆𝑣𝑥𝑑𝑣, 𝑥 ≥ 0, 𝑞 > 0.                                             (3.4) 

The hazard function (hf) of 𝑆𝐸  is, ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
and is given by 

      ℎ(𝑡) =
∫ 𝑣𝑞1

0
𝑒−𝜆𝑣𝑥𝑑𝑣

∫ 𝑣𝑞−11

0
𝑒−𝜆𝑣𝑥𝑑𝑣

, 𝑥 ≥ 0, 𝑞 > 0.                                                                  (3.5) 

 

Figure 4. Plots of sf (left panel) and hf (right panel) of slash exponential for different values of 𝜆 and 

q. 

The reversed hazard function (rhf) of the SE distribution 𝑟(𝑡) =
𝑓(𝑡)

𝐹(𝑡)
 is given by, 

𝑟(𝑡) =
𝑞𝜆 ∫ 𝑣𝑞1

0
𝑒−𝜆𝑣𝑥𝑑𝑣

1 − 𝑞𝜆 ∫ 𝑣𝑞−11

0
𝑒−𝜆𝑣𝑥𝑑𝑣

, 𝑥 ≥ 0, 𝑞 > 0.                                                      3.6) 

The odds function (Of) of the SE distribution, 𝑂(𝑡) =
𝐹(𝑡)

𝑆(𝑡)
 is given by 

𝑂(𝑡) =
1 − 𝑞𝜆 ∫ 𝑣𝑞−11

0
𝑒−𝜆𝑣𝑥𝑑𝑣

𝑞𝜆 ∫ 𝑣𝑞−11

0
𝑒−𝜆𝑣𝑥𝑑𝑣

𝑥 ≥ 0, 𝑞 > 0.                                                                         (3.7) 

 

Figure 5.Plots of rhf (left panel) and Of (right panel) of slash exponential for different values of 𝜆 and 

q. 

The rhf of the SE distribution is decreasing for smaller values of the parameter q and remains 

constant for higher values of q. Odds function is constant for larger values of q and is decreasing for 

different values of 𝜆 and smaller values of q. 
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3.1 Method Moments 

In this section we study the problem of estimating two unknown parameters, Θ =  (𝜆, 𝑞), of 

slash exponential distribution. The moment estimates of 𝜆 𝑎𝑛𝑑  𝑞can be obtained by solving the 

following normal equations, 

𝑞

  𝜆(𝑞 − 1)
= 𝑥̅,                                                                                               (3.8) 

𝑞

𝜆2(𝑞 − 2)
=

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛
,                                                                               (3.9) 

From equation (3.8) and (3.9) we get, 

𝑞̂ =
𝜆̂𝑥̅

𝜆̂𝑥̅ − 1
,                                                                                           (3.10) 

𝜆̂ = √
𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑞̂

𝑞̂ − 2
,          𝑞̂ > 2 .                                                          (3.11) 

3.2 Maximum Likelihood Estimation 

In this section we derive the maximum likelihood estimate of the unknown parameters, 𝜆 and q of 

standard slash exponential distribution. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be independent and identically distributed 

sample of size n from slash exponential distribution. The log likelihood function L is given by, 

L = log 𝐿(Θ; 𝑋) = 𝑛 𝑙og  𝜆 + 𝑛 log 𝑞 + ∑ log(𝐻(𝑥𝑖)),

𝑛

𝑖=1

                   (3.12) 

where 𝐻(𝑥𝑖) = ∫ 𝑣𝑞1

0
𝑒−𝜆𝑣𝑥𝑖𝑑𝑣. 

The score equations are given by 

𝑑𝐿

𝑑𝑞
=

𝑛

𝑞
+ ∑

𝐻1(𝑥𝑖)

𝐻(𝑥𝑖)

𝑛

𝑖=1

= 0.                                                             ( 3.13) 

𝑑𝐿

𝑑𝜆
=

𝑛

𝜆
− ∑

𝐻2(𝑥𝑖)

𝐻(𝑥𝑖)

𝑛

𝑖=1

= 0.                                                               (3.14) 

Where, 

𝐻1(𝑥𝑖) = ∫ 𝑣𝑞
1

0

log𝑒 𝑣 𝑒−𝜆𝑣𝑥𝑖𝑑𝑣. 

𝐻2(𝑥𝑖) = 𝑥𝑖 ∫ 𝑣𝑞+1
1

0

𝑒−𝜆𝑣𝑥𝑖𝑑𝑣. 

We estimate the unknown parameters using the R statistical software (R Core Team 2020) by 

maximizing the likelihood function (3.12).  

4 SIMULATION  

In this section a simulation study is conducted for investigating the performance of the 

maximum likelihood estimation for parameters (𝜆, 𝑞)of SE distribution. Using algorithm given below 
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we generated 1000 random samples of sizes n = 50, 100 and 250, under the SE model with different 

parameter values.  The algorithm developed in R was used to obtain the MLEs of the parameters.  

To generate samples from 𝑋~𝑆𝐸(𝜆, 𝑞) we use the following algorithm: 

Step 1. Input number of replications N=1000 

Step  2. Give various values for sample size n and parameters 𝜆 𝑎𝑛𝑑 𝑞. 

Step  3. Generate 𝑈~ 𝑈(0,1) 

Step 4. Generate 𝑌 =
−log (1−𝑈)

𝜆
, 𝜆 > 0.  

Step 5. Generate 𝑋 =
𝑌

𝑈1/𝑞 , 𝑞 > 0. 

Step 6. Compute MLE’s parameters 𝜆 𝑎𝑛𝑑 𝑞. 

Step 7. Repeat the steps 3 to 5, N times. 

Step 8. Compute the estimate of the MLE's, and sample standard deviations (SD) over the     

replications, of the parameters. 

The results from 1000 replications are presented in Table 1. It is clear from Table 1 that the 

estimation algorithm works satisfactorily for various choices of parameters. Also from Table 1 we 

can see that as sample size increases, estimates become closer to the true parameter values. Further 

results indicate that estimated standard deviations become smaller as sample size increases. 

Table 1: Simulation study - Maximum likelihood estimates of 𝜆 and q for various choices of 

parameters over 1000 replications of datasets of size n = 50, 100, 250. SD stands for the sample 

standard deviation over 1000 replications.  

n 𝜆 q 𝜆̂ (𝑆𝐷) 𝑞̂(𝑆𝐷) 

50 

0.5 1 0.387(0.351) 1.137 (0.362) 

1.5 2 1.712(0.378)) 2.247 (0.473) 

3 4 2.812(0.401) 3.752 (0.637) 

100 

0.5 1 0.512(0.277) 1.059 (0.149) 

1.5 2 1.401(0.281) 2.215 (0.357) 

3 4 3.127(0.274) 3.874 (0.582) 

250 

0.5 1 0.489(0.113) 1.011 (0.105) 

1.5 2 1.521(0.126) 2.024 (0.117) 

3 4 3.107(0.154) 4.031 (0.122) 

 

5 APPLICATIONS 

In this section we illustrate the application of SE distribution to green (control) and red (test)  

intensity measurements in cDNA dual dye microarray (Experiment id-38067) downloaded from the 

Stanford Microarray Database. Each array chip contains approximately 42000 human cDNA 
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elements, representing over 30000 unique genes. Descriptive statistics of the microarray green and 

red intensity data sets are given below in Table 2. 

The maximum likelihood estimates are calculated directly by using optim() function in R 

software (R Core Team, 2020) by maximizing the likelihood function (3.12). The Histogram and the 

density function of fitted SE and exponential distributions are presented in Figure 6. For the 

assessment the goodness of fit of the SE over exponential we have calculated the Akaike's 

Information Criterion (AIC) (Akaike 1973; Burnham and Anderson 1998), Corrected Akaike 

information criterion (AICC)(Hurvich and Tsai, 1989), Consistent Akaike information criterion (CAIC) 

(Bozdogan 1987), Hannan-Quinn information criterion (HQIC) (Hannan and Quinns 1979), and 

Bayesian Information Criterion (BIC) (Schwarz 1978) for green and red intensity measurements in 

microarray gene expression. The results are presented in Table 3 and Table 4 respectively. The best 

model is the one which yield smaller values for these statistic and are considered to provide better 

fit to the data.  

Table 2: Descriptive statistics for green and red intensity measurements in microarray data 

 n Minimum Median Mean Maximum SD Skewness Kurtosis 

Green  

Intensity 

43104 0.333 8.319 13.711 244.584 15.735 3.239 29.935 

Red intensity 43104 0.765 6.003 12.079 250.618 17.195 3.955 26.665 

 

 

Figure 6. Fitted SE probability density function (red line) and Exponential density function (blue line) 

to the Green intensity left panel and red intensity right panel for microarray Experiment id 38607 

Table 3: Application - maximum likelihood estimates, AIC, AICC, CAIC, HQIC and BIC for SE and 

exponential distributions for green intensity measurements in microarray dataset 38607 

 𝝀̂ 𝒒̂ AIC AICC CAIC HQIC BIC 

SE 0.078 8.512 3139.496 3139.501 3158.838 3140.231 3156.838 

Exponential 0.082 - 3413.034 3413.033 3422.706 3413.402 3421.706 
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Table 4: Application - maximum likelihood estimates, AIC, AICC, CAIC, HQIC and BIC for SE and 

exponential distributions for red intensity measurements in microarray dataset 38607 

 𝝀̂ 𝒒̂ AIC AICC CAIC HQIC BIC 

SE 0.104 14.445 3509.049 3509.050 3528.392 3509.784 3526.392 

Exponential 0.099 - 3867.381 3867.382 3877.052 3867.748 3876.052 

 

From Table 3 and Table 4 we can see that the AIC, AICC, CAIC, HQIC and BIC for the SE had a 

lower value compared to exponential distribution. A smaller value indicates a better fit, and hence, 

SE fit the data better than exponential distribution. From Figure 6 it is clear that tail behaviour is 

better captured in SE than in exponential. 

6 CONCLUSIONS 

In this paper we introduced the two-parameter slash exponential (SE) distribution. We 

derived the pdf, cdf, sf, hf, rhf, odd function, moments and measures of skewness and kurtosis. From 

the plots of SE distribution we can see that SE distribution has heavier tails than exponential. The 

hazard function of the SE model is decreasing for smaller values of the parameter q and remains 

constant for higher values of q. For q=1 the slash exponential distribution has heavier tails like half 

Cauchy distribution. Finally we illustrated the application of slash exponential distribution using real 

datasets. The application illustrate that the SE distribution provides better fit than exponential 

distribution. We expect that the model presented in this paper will be usefull in the field of 

microarray data analysis. 
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